

Materials Informatics for Catalyst Stability & Functionality Steven B. Torrisi

Harvard John A. Paulson School of Engineering and Applied Sciences

About Me

Sustainable Energy Development

Computational Materials Science

Catalyst Discovery, Optimization, and Understanding

supporting

Credit: Top, A. Singh, Left, IMASC, Right, LBNL, Bottom, J.S. Lim

Scientific Directions During my Ph.D.

Scientific Directions During my Ph.D.

2D Materials

Carr, Massat, **Torrisi** et al. *PRB* (2018)

Larson, Chen, **Torrisi** *et al*. PRB (2020)

Tritsaris, Carr, Zhu, Xie, Torrisi et al. 2D Mat. (2020)

Rhone, Chen, Desai, **Torrisi** et al. Sci. Rep. (2020)

Photoelectrocatalyst Discovery

Torrisi, Singh, Montoya, Biswas, Persson, NPJ 2D Materials & Applications 2020

Scientific Software Development

Sumner, **Torrisi**, Brickner, Brickner (Under Review, *eLife*)

Gerber, **Torrisi**, et al. (In prep.)

ML-Based X-Ray Characterization

I	

Torrisi, *et al.*, NPJ Computational Materials (2020)

Marcella, Lim, Plonka... **et al.** (In prep.)

Machine-Learned Interatomic Potential Fitting

Vandermause, Torrisi, et al. NPJ Computational Materials (2020)

Torrisi, et al. (In prep)

1st author (*et al.*") (In prep.

My Practicum: Discovery of Two-Dimensional CO₂ Reduction Photocatalysts

In collaboration with...

Dr. Tathagata Biswas Prof. Arunima Singh Arizona State University

Dr. Joseph Montoya Toyota Research Institute

Prof. Kristin Persson UC Berkeley

Energy-Relevant Materials Catalysts Materials which facilitate a useful chemical reaction

Left: Jin Soo Lim, Right: Arunima Singh

Killer App: "Artificial Leaves"

Fuel Generation From $CO_2 e.g.$ $CO_2 + 2 H_2 \rightarrow CH_3OH$ $CO_2 + 4 H_2 \rightarrow CH_4 + 2H_2O$

Photo credit: MIT News Office

Density Functional Theory, Briefly

The physical laws for a large part of physics and the whole of chemistry are completely known ... "approximate practical methods of applying quantum mechanics should be developed"

50+ years later: Solve with functional of electron density ρ instead of all electrons Ψ

"Quantum Mechanics of Many-Electron Systems," P.AM. Dirac 1929

DFT-Accessible Properties

CO₂ Reduction & Artificial Photosynthesis

Central Challenges:

- CO₂ very stable
- Complex reaction pathway
- Hard to find reactive and stable materials

Many Reaction Products of Interest

Reduction to CO

Reduction to CO

Reduction to CO

Previous Work: Discovery of Photocatalysts

Computational Discovery of Photocatalyst Compounds

40+ New Photocatalysts (all 'bulk')

A. Singh, J. Montoya, J. Gregoire, K. Persson, *Nat. Comm. 2019* SiAs

ZnTe

Could alternate structures do better?

Larger Surface Area

Better Excited e⁻ Properties

"Two-Dimensional" Structures

Materials in a sheet of atoms one atom, or layer thick 3D = "Bulk" 2D= "Monolayer" Better Light Absorption

Larger Surface Area

Better Excited e⁻ Properties

1. Feasibility: For bulk structures, determine if two-dimensional phases can exist.

1. Feasibility: For bulk structures, determine if two-dimensional phases can exist.

- 1. Feasibility: For bulk structures, determine if two-dimensional phases can exist.
- 2. Suitability: For the resultant 2D phases, predict their catalytic properties.

- 1. Feasibility: For bulk structures, determine if two-dimensional phases can exist.
- 2. Suitability: For the resultant 2D phases, predict their catalytic properties.

Feasibility via Stability

Feasibility via Stability

Thermodynamics

Rank candidate structures by energy Compare ΔE_F vs. bulk

Heuristic Cutoff Energy (From literature¹):

 $\Delta E_{f/atom} \leq 200 \text{ meV}$

[1] B.C. Revard, W.W. Tipton, A. Yesypenko, R.G. Hennig, PRB 93 (2016) ³⁶

Stability Screening: Thermodynamics

288 Candidate 2D Forms Of Compounds

36 Unique 2D Structures

Thermodynamically Stable Forms

Stability Screening: Dynamics

Thermodynamics

Kinetics

Stability Screening: Dynamics

Thermodynamics

Only a small amount of thermal energy required

Dynamic Instability

Stability Screening: Dynamics

Only a small amount of thermal energy required

Dynamic Instability

Vibrations for Dynamic Instability

Phonon Spectra ✓ Easy to check for dynamic instability

 $D(\vec{q})\vec{u}_{n\vec{q}} = \omega_n^2(\vec{q})\vec{u}_{n\vec{q}}$ (1) $\omega_n^2 > 0: Stable$ $\omega_n^2 < 0: Unstable$

http://henriquemiranda.github.io, Materials Project, ZnTe (mp-2176)

Frequency (cm⁻¹)

-50

Μ

Κ

Г

⁴⁶ Unstable Phonon Mode from Yang et al. Comp. Mat. Sci. 95 (2014)

http://henriquemiranda.github.io, Materials Project, ZnTe (mp-2176)

Dynamical Stability Found!

 Feasibility: For bulk structures, determine if two-dimensional phases can exist.
Suitability: For the resultant 2D phases, evaluate their catalytic properties.

Catalytic Suitability in Three Steps

Light Absorption
Sufficiently Energetic e⁻
<u>3. Reactant Binding</u>

Light Absorption in Materials

Atoms : Crystals Orbitals : Bands

Light Absorption in Materials

Atoms : Crystals Orbitals : Bands

For solar light harvesting... Band gap size should correspond to visible light energy (Direct gap preferrable)

Band Gaps Lie In Visible Spectrum

Boxed: Direct Gap Note: Computed using HSE06 functional

Excited Electrons must be high-energy!

Boxed: Direct Gap Note: Computed using HSE06 functional

Band Edges Facilitate CO₂ Reduction

Excited states are *above* reaction energies

> → they may participate in reactions

Boxed: Direct Gap Note: Computed using HSE06 functional

Band Edges Facilitate CO₂ Reduction

Excited states are *above* reaction energies

> → they may participate in reactions

Calculation of "Theoretical Overpotential"

• Compute binding energies of reactants on 'basal plane' (top of monolayer)

- Account for contributions to free energy
- Compare reaction pathway; determine 'in the dark' bias voltage to induce reaction

Basal Plane Binding Energies

- This is "in the dark"; no illumination present
- Height of barrier: positive binding energy
- May change when excited electrons present
- **Detailed evaluation** of mechanism would be study in its own right

60

Next Steps: Improving Reactivity

- Model reactivity of surface edges
- Preliminary results vacancies on surface bind stronger
- Explore role of different dopants

Conclusions

Thermodynamics Dynamic Stability

S.B. Torrisi, A. Singh, J. Montoya, T. Biswas, K.A. Persson, NPJ 2D Mat. & Appl. 2020 64

Acknowledgements

Urban Axes 2019

Summer 2018

<image>

The Materials Project

