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What does a basic neural network look like?
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Summary: connected layers of nonlinear regression




MIND BENDER

Physicist: The Entire Universe Might Be a
Neural Network

"The idea is definitely crazy, butifitis crazy enough to be true? That
remains to be seen.”

VICTOR TANGERMANN | SEPTEMBER 9TH 2020



What if we can better our understanding of
nonlinearities within the earth system by interpreting
what neural networks learn?



We know this: oceanic patterns can be used to predict
other weather and climate patterns years in advance

Sea-surface temperature Continental surface temperature
anomalies anomalies
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The end-goal:

|dentify oceanic patterns that lend multi-year predictability,
then assess their nonlinearity

Sea-surface temperature Regions of the anomalies
anomalies that lend predictability

SST Anomaly (°C) Relevance (unitless)
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Problem #1

There isn’t a framework for clearly understanding how and why
neural networks make their decisions for geoscientific applications.

Problem #2

If the framework is developed, it needs to be tested on multiple
applications to ensure its reliability.

Problem #3

We can then start applying the framework to furthering our
understanding of earth-system predictability.




A method for interpreting neural networks...

Step 1) Input a sample into a trained network...

_ forward pass
input > output
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From Montavon et al. (2017); Layerwise Relevance Propagation




A method for interpreting neural networks...

Step 2) Trace backwards to find which inputs
were most relevant for the output...

relevance propagation
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From Montavon et al. (2017); Layerwise Relevance Propagation



Testing the interpretations using a simple application

Inputs Outputs
Global maps of sea-surface The sign of surface temperature
temperature in the red box

Each input node = o
SST at one grid point _ -

Likelihood of La Nina

Likelihood of El Nifo




The interpretability method works well In this case

Where does the neural network focus its attention for each sample?
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Comparing nonlinear and linear approaches

Nonlinear
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Comparing nonlinear and linear approaches

Linear

Output Layer
(number of grid points) (8 nodes)

Each input node =
Variable at one grid point _ - -
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Comparing nonlinear and linear approaches

Hidden Layers
(number of grid points) (2 layers;
64 and 128 nodes each)

Output Layer
(8 nodes)

Each input node =
Variable at one grid point - = -~
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Nonlinear vs linear accuracy

The neural network approach is more accurate than the linear approach.
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Case-by-case examples of MJO nonlinearity

Composite Phase 7 Cloud Pattern
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Case-by-case examples of MJO nonlinearity

Composite Phase 7 Cloud Pattern
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Case-by-case examples of MJO nonlinearity

Composite Phase 7 Cloud Pattern
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The simple neural network design for
multi-year forecasts:
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Looking at where the neural network looks to make its
predictions....

SST Anomaly (°C) Relevance (unitless)
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Composite interpretation maps for different locations

The interpretations can be used to understand which oceanic patterns
lead to predictability at any location.
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Interpretation map clusters for one location

Distinct regimes of predictability become apparent when the
LRP heatmaps are clustered into their dominant patterns.

average pattern




Interpretation map clusters for one location

Distinct regimes of predictability become apparent when the
LRP heatmaps are clustered into their dominant patterns.
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Another interesting application:

ldentifying time-evolving patterns of climate change

(talk with CSGF fellow Jamin Rader for more information)



Identifying time-evolving patterns of climate change

1975 (N=15)
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From Barnes et al. (2020); talk with CSGF fellow Jamin Rader for more information



Identifying time-evolving patterns of climate change

2015 (N=60)
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From Barnes et al. (2020); talk with CSGF fellow Jamin Rader for more information



Identifying time-evolving patterns of climate change

2055 (N=72)
,~,,-~:_.~.f‘;'.‘! - -
'_T( ’~ £ 73

< B
0.3 04 05 06 0.7 0.8
relevance

From Barnes et al. (2020); talk with CSGF fellow Jamin Rader for more information
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