

Modulation of the Electronic Structure and Chemical Reactivity of 2D Materials by the Application of Strain

Quentarius Moore

Advisor: James D. Batteas

DOE CSGF Program Review 4th Year Fellow Presentation

Outline

- Introduction
 - Motivation and Challenges
 - Mechanochemistry
- Research Components
 - Modulating the Chemical Reactivity of Graphene with Aryl Diazonium by Application of Strain
 - Tuning the Electronic and Chemical Properties of Strained MoS₂ under Reactive Species (oxygen radical, O₂ and H₂O)
- Summary and Acknowledgements

Model of bilayer MoS₂

Two-Dimensional (2D) Materials

Overview of structural, mechanical, electrical, thermal, and chemical properties of 2D materials that are relevant to tribological performance

- > 2D & Atomically Thin
- Exceptional mechanical and frictional properties
- Flexible electronics

- Solid dry lubricant
- Anti-wear performance

- Zhang, S; et al. Tribology of two-dimensional materials: From mechanisms to modulating strategies. Mater. Today. 2019, 26, 67-86
- NASA Dry Lubricant Smooths the Way for Space Travel, Industry https://spinoff.nasa.gov/Spinoff2015/ip_7.html 2015

Graphene

Graphene: planar six membered sp² carbon ring highlighted in red

BAT

Est. 1996

ΤΕρ🔙

- Exceptional flexibility and mechanical strength
- Network of conjugated pi-system
- > Application as solid lubricant, sensor, and optoelectronics

2D Transition Metal Dichalcogenides

Molybdenum disulfide (MoS₂)

Three atomic layers hexagonal

N

ER

- Exciting mechanical, electronic and frictional properties
- Promising potentials for solid lubricants, ion batteries, low power transistors, optoelectronic devices

- BATTER Est. 1996
- Toh, R.; Pumera, M., et al. 3R phase of MoS₂ and WS₂ outperforms the corresponding 2H phase for hydrogen evolution. Chem. Commun. **2017**, 53, 3054-3057

Radisavljevic, B., et al. Single-layer MoS₂ Transistors. Nature Nanotechnology **2011**, 6, pages147–150

Challenges of 2D Material Chemistry

 \geq

Tunable electronic and optical properties

1,77-86

- Hirsch, A.; Hauke, F., Post-Graphene 2D Chemistry: The Emerging Field of Molybdenum Disulfide and Black Phosphorus Functionalization. Angew. Che. Int. 2017, 57, 4338-4354
 Johns, J; Hersam, M. Atomic Covalent Functionalization of Graphere Acc. Chem. Res. 2013, 46,
- TEXAS A&M UNIVERSITY

- Inert basal plane
- Difficult to initiate and control degree of functionalization
- > Non-uniform coverage

Typical lattice distortion resulting from a single covalent adsorbate on graphene.

Goal of the overarching research projects

The fundamental understanding of how force alters reaction energies and pathways – *mechanochemistry* – is far less developed and is one of *the last fundamental frontiers in chemistry*.

Snapshot of a molecular dynamics indentation simulation, a 6 nm diamond particle (central sphere) is indenting a graphene sheet. (range: 1×10^7 bar* Å³ to 1×10^7 bar* Å³).

The chemical reactivity of the basal plane of 2D materials can be modulated by electronic and geometric effects through directed forces

CSGF Sponsored Research

Goal of Work: To develop a fundamental understanding of mechanochemical reactions, here we focused on how the precise application of force, and importantly, its direction, can drive chemical bond formation.

Main Projects:

- 1. How does varying mechanical strain of the graphene lattice affect the reactivity of graphene?
- 2. How does controlled strain influence the reactivity of MoS_2 on metal substrates?

Outline

- Introduction
 - Motivation and Challenges
 - Mechanochemistry
- Research Components
 - Modulating the Chemical Reactivity of Graphene with Aryl Diazonium by Application of Strain
 - Tuning the Electronic and Chemical Properties of Strained MoS₂ under Reactive Species (oxygen radical, O₂ and H₂O)
- Summary and Acknowledgements

Model of bilayer MoS₂

Modulating Reactivity of Graphene by Application of Strain

Q1: How does varying mechanical strain of the graphene lattice affect the reactivity of graphene?

➢Formation energy decreases as strain increases

Compressive strains results in enhanced reactivity

 Bissett, M.; et al. Enhanced Chemical Reactivity of Graphene Induced by Mechanical Strain. ACS Nano. 2013, 7, 10335-10343
Li, B.; et al., Orientation-Dependent Strain Relaxation and Chemical Functionalization of Graphene on a Cu(111) Foil. Adv. Mater. 2018, 30, 1706504

Modulating Reactivity of Graphene by Application of Strain

Q1: How does varying mechanical strain of the graphene lattice affect the reactivity of graphene?

➢Formation energy decreases as strain increases

Compressive strains results in enhanced reactivity

 Bissett, M.; et al. Enhanced Chemical Reactivity of Graphene Induced by Mechanical Strain. ACS Nano. 2013, 7, 10335-10343
Li, B.; et al., Orientation-Dependent Strain Relaxation and Chemical Functionalization of Graphene on a Cu(111) Foil. Adv. Mater. 2018, 30, 1706504

Modulating Reactivity of Graphene by Application of Strain

Q1: How does varying mechanical strain of the graphene lattice affect the reactivity of graphene?

➤Formation energy decreases as strain increases

Lack of systematic control of strain

Difficulty determining "real" strain

on a Cu(111) Foil. Adv. Mater. 2018, 30, 1706504

>Decouple substrate effects from strain/reactivity experiments

Bissett, M.; et al. Enhanced Chemical Reactivity of Graphene Induced by Mechanical Strain.
ACS Nano. 2013, 7, 10335-10343
Li, B.; et al., Orientation-Dependent Strain Relaxation and <u>Chemical Functionalization of Graphene</u>

Compressive strains results in enhanced reactivity

- Experimentally determined that an increase in curvature of the graphene lattice, leads to an increase of reactivity of graphene
- Graphene on the smaller NPs reacted to a greater extent than graphene on both the larger NPs, and on flat silica

Representative AFM topography images of graphene-covered nanoparticle films on (A) 85 nm NP, and (B) 6 nm NP. (C) Raman D peak intensity map of graphene on 6 nm NPs after reacting with 4-NBD. (D) Comparison of D/G growth after reacting graphene on the different films.

Radical reaction of 4-nitro-benzenediazonium tetrafluoroborate (4-NBD) with graphene

Computational Findings

• An increase in curvature of the graphene leads to a decreased in-plane electron delocalization, lowering the activation barrier for functionalization with 4-NBD

A) Curvature-dependent activation barrier of 4-NBD functionalization. B) Correlation of the π -orbital axis vector (POAV) angle with the reaction energy (Δ E).

Summary of Results

Fig. Z. A) Schematic diagram showing the relative orienation of graphene frontier orbitals. B) Correlation of the POAV angle with the reaction energy (ΔE).

Outline

Introduction

- Motivation and Challenges
- Mechanochemistry

Research Components

- Modulating the Chemical Reactivity of Graphene with Aryl Diazonium by Application of Strain
- Tuning the Electronic and Chemical Properties of Strained MoS₂ under Reactive Species (oxygen radical, O₂ and H₂O)
- Summary and Acknowledgements

Model of bilayer MoS₂

Formation of Coherent MoS₂ Heterostructures

Modulating Properties of Strained MoS₂

• We see the formation of coherent single-layer 1H-1T MoS₂ heterostructures by mechanical exfoliation on Au(111)

Large-scale STM image ($V_{\text{bias}} = +500 \text{ mV}$, $I_t = 0.5 \text{ nA}$) of singlelayer MoS₂ with two different moiré patterns

Formation of Coherent MoS₂ Heterostructures

Voltage (Vi

1T-MoS₂

Modulating Properties of Strained MoS₂

Simulated moiré patterns for MoS_2 on Au(111), with Au atoms shown in red and sulfur atoms from the lower layer of the MoS_2 shown in yellow. The left side of the MoS_2 flake is the 1H form, while the right side is the 1T form.

Reactivity of MoS₂ in the Presence of Reactive Species

Oxidation of Strained MoS₂

How is the initial step of oxidation affected by:

- Layer thickness
- Metal substrate
- > Strain

Model of oxygen radical reacted to the surface of bi-layer MoS₂

Goal: assessing the reactivity of MoS_2 in the presence of reactive species (i.e. oxygen radical, O_2 , H_2O , etc.)

Q. Moore, N.S. Bobbitt and M. Chandross, The effects of oxidation on friction in MoS2, in preparation.
Curry, J., et al, Impact of Microstructure on MoS2 Oxidation and Friction, ACS Appl. Mater. Interfaces 2017, 9, 33, 28019–28026.

Outline

- Introduction
 - Motivation and Challenges
 - Mechanochemistry
- Research Components
 - Modulating the Chemical Reactivity of Graphene with Aryl Diazonium by Application of Strain
 - Tuning the Electronic and Chemical Properties of Strained MoS₂ under Reactive Species (oxygen radical, O₂ and H₂O)
- Summary and Acknowledgements

Model of bilayer MoS₂

Summary

- Computationally determined that an increase in curvature of graphene leads to a decreased in-plane electron delocalization, lowering the activation barrier for functionalization with 4-NBD
- Experimentally show that an increase in the curvature of the graphene lattice, leads to an increase of reactivity of graphene
- > Plan to describe the adsorption of water and oxygen on MoS_2 and their effect on the tribological properties.
- \succ Plan to describe the effects of layer thickness, metal substrate, and strain on the adsorption of water and oxygen on MoS₂

Postulate that new science may be pushed forward by investigating changes in the reactivity of 2D-materials as a function of precise out-of-plane distortion of the basal plane

Acknowledgements

Research Team	Collaborators	Funding
TAMU	Sandia National Labs	\sim
Dr. James D. Batteas (Advisor)	Dr. Mike Chandross	DOE
Dr. Sarbajit Banerjee (Committee Member)	Dr. Nicolas Argibay	CSGF
Dr. Perla Balbuena (Committee Member)	Dr. John F. Curry	
Dr. Daniel Tabor (Committee Member)	Dr. Michael Wolfe	Condia
	Dr. Scott Bobbitt	Sanula National
Dr. Cody Chalker (UC Davis)		
Dr. Meagan Elinski (Hope College)	<u>UPenn</u>	Luboratorioo
Dr. Zhoutong Liu (Frontage Laboratories)	Dr. Andrew Rappe	
Batteas Group: Maelani Negrito, Fanglue	Dr. Sayan Banerjee	
Wu, Nate Hawthorne, Xinyuan Chen,		
Noah Sheehan, Mckenzie Pedley		

Thank you for your time! Any questions?

