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Two-Dimensional (2D) Materials

» 2D & Atomically Thin
» Exceptional mechanical and frictional properties

" > Flexible electronics
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Overview of structural, mechanical, electrical, thermal, and chemical properties of 2D
materials that are relevant to tribological performance

» Zhang, S; et al. Tribology of two-dimensional materials: From mechanisms to modulating
i | TEXAS AsM

strategies. Mater. Today. 2019, 26, 67-86
UNIVERSITY

» NASA Dry Lubricant Smooths the Way for Space Travel, Industry
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Graphene

> Exceptional flexibility and mechanical strength

» Network of conjugated pi-system

» Application as solid lubricant, sensor, and optoelectronics

» Hirsch, A.; Hauke, F., Post-Graphene 2D Chemistry: The Emerging Field of Molybdenum
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N B

UNIVERSITY

Est. 1996



2D Transition Metal Dichalcogenides

Molybdenum disulfide (MoS,) > Stable against reactions with environmental species

» Three atomic layers hexagonal
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Challenges of 2D Material Chemistry

» Inert basal plane
» Difficult to initiate and control degree of functionalization
» Non-uniform coverage
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» Typical lattice distortion resulting from a
single covalent adsorbate on graphene.

> Hirsch, A.; Hauke, F., Post-Graphene 2D Chemistry: The Emerging Field of Molybdenum
Disulfide and Black Phosphorus Functionalization. Angew. Che. Int. 2017, 57, 4338-4354 I| TEXAS A&M

» Johns,J; Hersam, M. Atomic Covalent Functionalization of Graphere Acc. Chem. Res. 2013, 46,
1, 77-86
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Goal of the overarching research projects

The fundamental understanding of how force alters reaction energies and pathways —
mechanochemistry — is far less developed and is one of the last fundamental frontiers in chemistry.

Snapshot of a molecular dynamics indentation simulation, a 6 nm
diamond particle (central sphere) is indenting a graphene sheet. (range: -
1x107 bar* A3 to 1x107 bar* A3).

The chemical reactivity of the basal plane of 2D materials can be modulated by
electronic and geometric effects through directed forces

UNIVERSITY
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CSGF Sponsored Research

Goal of Work: To develop a fundamental understanding of mechanochemical reactions, here we focused on
how the precise application of force, and importantly, its direction, can drive chemical bond formation.

Main Projects:

1. How does varying mechanical strain of the graphene lattice affect the reactivity of graphene?

2. How does controlled strain influence the reactivity of MoS, on metal substrates?

UNIVERSITY
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Modulating Reactivity of Graphene by Application of Strain

Q1: How does varying mechanical strain of the graphene lattice affect the reactivity of graphene?

» Tensile Strain » Compressive Strain
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»Formation energy decreases as strain increases
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Modulating Reactivity of Graphene by Application of Strain

Q1: How does varying mechanical strain of the graphene lattice affect the reactivity of graphene?

> Tensile Strain
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> Bissett, M.; et al. Enhanced Chemical Reactivity of Graphene Induced by Mechanical Strain.

ACS Nano. 2013, 7, 10335-10343
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Modulating Reactivity of Graphene by Application of Strain

Q1: How does varying mechanical strain of the graphene lattice affect the reactivity of graphene?
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»Formation energy decreases as strain increases »Compressive strains results in enhanced reactivity

» Lack of systematic control of strain
» Difficulty determining “real” strain
»Decouple substrate effects from strain/reactivity experiments

> Bissett, M.; et al. Enhanced Chemical Reactivity of Graphene Induced by Mechanical Strain.
ACS Nano. 2013, 7, 10335-10343

> Li, B.; et al., Orientation-Dependent Strain Relaxation and Chemical Functionalization of Graphene

on a Cu(111) Foil. Adv. Mater. 2018, 30, 1706504
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Reactivity of Graphene through Tailorable Curvature Induced by Nanoscopic Rough Films

Radical reaction of 4-nitro-benzenediazonium tetrafluoroborate (4-NBD) with graphene

Out-of-plane strain

* We focused on how the application of
force, and importantly, its direction, can drive
chemical bond formation. Flat 85 nm 6 nm
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Reactivity of Graphene through Tailorable Curvature Induced by Nanoscopic Rough Films

Radical reaction of 4-nitro-benzenediazonium tetrafluoroborate (4-NBD) with graphene

250

0

Experimental Findings

Y Range: 500 nm
0
¥ Range: 500 nm

-250

0
X Range: 500 nm

* Experimentally determined that an increase in e |8
curvature of the graphene lattice, leads to an
increase of reactivity of graphene
* Graphene on the smaller NPs reacted to a
greater extent than graphene on both the larger
NPs, and on flat silica
0CCD cts \“9“ N’&I‘a \rb;c\n:;c(b;a&ém 3 \‘9“ \039 \*p
Wavenumber (1/¢m)

Representative AFM topography images of graphene-covered nanoparticle films on (A) 85 nm
NP, and (B) 6 nm NP. (C) Raman D peak intensity map of graphene on 6 nm NPs after
reacting with 4-NBD. (D) Comparison of D/G growth after reacting graphene on the different

films.
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Reactivity of Graphene through Tailorable Curvature Induced by Nanoscopic Rough Films

A
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* Anincrease in curvature of the graphene > . ‘« g 6 nm NP
leads to a decreased in-plane electron o 0.000 0.005 0.1 0.2 -1.4
delocalization, lowering the activation barrier < h:r POAV angle (degree)

for functionalization with 4-NBD

A) Curvature-dependent activation barrier of 4-NBD
functionalization. B) Correlation of the m-orbital axis vector
(POAV) angle with the reaction energy (4E).
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Summary of Results
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to an increase of reactivity of graphene

Fig. Z. A) Schematic diagram showing the relative
orienation of graphene frontier orbitals. B) Correlation of
the POAYV angle with the reaction energy (4E).
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Formation of Coherent MoS, Heterostructures

Modulating
Properties of

Strained MoS,

* We see the formation of coherent single-layer
1H-1T MoS, heterostructures by mechanical
exfoliation on Au(111)

Large-scale STM image (V,;,, = 500 mV, /, = 0.5 nA) of single-
layer MoS, with two different moiré patterns

UNIVERSITY

> Wu, F.; et al. Formation of Coherent 1H—1T Heterostructures in Single-Layer MoS2 on Au(111)
ACS Nano. 2020, 14, 12, 16939-16950 i IIifl TEXAS A&M
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Formation of Coherent MoS, Heterostructures

Modulating N |
Properties of 5= == BRI 1 Phase IR S

T r3d
4322ci 1T Phase 3393
CeLIsI~RA e L s ESREL0 20 ¢ L8 Ual oo TN ¢

oo b
Sa2~CCE3 3520w Tyl

oy = / ' ’
. - " ) = o , 13323200 tateCeta -
St ral ed M OS e e > - - =8 ) O 5"*; 9" u:’;:‘u“
Il p) e ) 2 : QL34 090 R 33333 Celetatanar rad
, : )
. : e¥323350 0, ARrCeled b4 2480d

Simulated moiré patterns for MoS, on Au(111), with Au atoms shown in red and
sulfur atoms from the lower layer of the MoS, shown in yellow. The left side of the
MoS, flake is the 1H form, while the right side 1s the 1T form.
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Reactivity of MoS, in the Presence of Reactive Species

A) Simulation structure

top layers
rigid, held spatially fixed

AOor0,gas
thermally equilibrated for 100 ps
thermostat at 250°C; NVE ensemble

surface layer
nanocrystalline MoS,
rigid, held spatially fixed

bounding layer

Oxidation of S s,
Strained MoS, o o
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How is the initial step of oxidation affected by: Y B N Y :
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_ (A) Structure of MDD simulation using a
» Layer thickness reactive force field (ReaxFF) for the

interaction between MoS, and AO and O,
» Metal substrate gas.

> Strain

Model of oxygen radical reacted to the surface of bi-layer MoS,

Goal: assessing the reactivity of MoS, in the presence of reactive species (i.e. oxygen radical, O,, H,0, etc.)

A > Q. Moore, N.S. Bobbitt and M. Chandross, The effects of oxidation on friction in MoS2, in preparation.
B B l l B s | > Curry, J., et al, Impact of Microstructure on MoS2 Oxidation and Friction, ACS Appl. Mater. Interfaces 2017, 9, AlM TEXAS A&M
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UNIVERSITY
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> Computationally determined that an increase in curvature of graphene leads to a decreased in-plane electron
delocalization, lowering the activation barrier for functionalization with 4-NBD

> Experimentally show that an increase in the curvature of the graphene lattice, leads to an increase of reactivity of
graphene
> Plan to describe the adsorption of water and oxygen on MoS, and their effect on the tribological properties.
> Plan to describe the effects of layer thickness, metal substrate, and strain on the adsorption of water and oxygen on MoS,
A) B)
g ﬂE?t -0.4
8075 more curvature| 06 OEI'-'f-I-T_ : v
So.70 / 208 *n.e JR2=0.97
- qu 1 o..
g 068 6nmNF 12 O
% 0.000 0.005 0.1 0.2 -14 6 nm NP
< h:r POAV angle (degree)

Postulate that new science may be pushed forward by investigating changes in the reactivity
of 2D-materials as a function of precise out-of-plane distortion of the basal plane
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