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The Situation

1. The CGM is a multiphase gas reservoir & mediator
2. Gas must be accreted to sustain star formation over cosmic time
3. Galaxies tune their stellar mass based on their dark matter mass
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Over time,

P - gas in the CGM cools
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Outflows lengthen the A Contender: Some of the gas can cool

cooling time of the CGM . . . and fall in towards the
(add heat, lower density) PreCIpltatlon galaxy to be accreted

More stars can form,
making more stellar
feedback

Stellar feedback drives
outflows from the galaxy

B e —



Previous ldealized Simulations

Star-Forming Disk, No CGM
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The Sisyphus Suite




Target Questions

e Can we make a self-regulating system?
e Doesitregulate according to the precipitation model?
e How robustis self-regulation to variations in initial conditions?
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Numerical Test of Self-Regulation

Setup

e Milky Way-like idealized, isolated galaxy

e Gravitational potential
o NFW dark matter
o Stellar disk

e Star particles
e Rotation in both disk and CGM (shiny!)

e CGM set-up to match expectations of
precipitation-regulation (Voit 2019)
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Variants
e Disable stellar feedback (“control”)
e |[nitial tcool/tﬁ
o 5,10,20
e Initial CGM rotation
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Initial Burst of
Star Formation

e Gasrapidly collapses
e High density, Many stars,
Much feedback
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Initial Burst of
Star Formation

e Blow up your lovely CGM
before gas can cool, infall

e Verylow density near
disk with continual
strong SNe shocks
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Solution:
Ramp FB Efficiency

P
Eyg = € - AMggc

107

10".\ g + -

1077 1 ' E

Feedback Efficiency &rg

10-8 T T T T T T
0.0 0.5 10 15 20 25 30 35 40

Time (Gyr)

m— T —

200

i 10-24
150

100 N

50

._.
<
g

sk
:‘

]

=

10-28

t = 1000.0 Myr
10-2‘)

- —-150 —100 =50 0 50

y (kpc)

100 150 200

Average Density (g cm™3)



Simulation Results
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http://www.youtube.com/watch?v=MpwP4nP9VdU

Expectations

e Selfregulating

o ~Constant stellar mass over time

o Gasinfall (not just forming stars from initial gas content)

o Long term stability of CGM structure/entropy profile
e Attractive equilibrium state

o Slight variations in initial conditions should all become self-regulating
e Precipitation hallmarks

o Median tcool/tﬁ ~10in the CGM

[ | PrelminaryResulis



Mass Growth
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Radial Disk Accretion

Negative = Infalling

Warm Gas (10* < T<10°K)

Initial disk

“smoosh” Fold Gas€T<104 K)
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Expectations

e Selfregulating

o ~Constant stellar mass over time v/

o Gasinfall (not just forming stars from initial gas content) v/

o Long term stability of CGM structure/entropy profile v/
e Attractive equilibrium state

o Slight variations in initial conditions should all become self-regulating Depends
e Precipitation hallmarks

o Mediant__/t.~10inthe CGM Depends
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Summary

e Goal: make a model galaxy that self-regulates it's star formation through
precipitation in it's circumgalactic medium (CGM)

e Simulations of isolated, idealized galaxies that directly model both the CGM and a
dense, star-forming disk

o Theidealized nature creates unique challenges: initial star formation burst can undo
carefully chosen CGM ICs

e Presented variations (with feedback) all achieve a steady late-time stellar mass

e However, only some variants are precipitation-regulated.
o Others appear to shut off star formation by excessively heating the gas



Behroozi+19

S
TIrrIT
-
-
=
—

0.01F .
0.001F -

Stellar - Peak Halo Mass Ratio (M, / Mh)

4 : i .l - llllll L .- llllll s L1 ljljll i - lllljl .l A A 1 1111

0.0001 : 12 13 14 15

10 10 10 10 10 10
Peak Halo Mass [M |



S

0.01F

Stellar - Peak Halo Mass Ratio (M, / Mh)

e

0.001F —z=0. z=6 2
; Zf)) — 7 =] :
;;:; —z=8
z=4 —7=90
—z=5 —cp ]
z 0.000I e L el = ~ raaul 'l reaanal - 1
10" 10" 10" 10" 10" 10

Stellar Mass relates to Halo Mass

Peak Halo Mass [M |

Behroozi+19



A Contender:
Precipitation

e Cold gas clumps can fall onto
galaxy ift_ /t.distribution
favorable (Median value ~ 10)
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A Contender: Precipitation
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Numerical Test of Self-Regulation

e Milky Way-like idealized, isolated galaxy
e NFW dark matter potential
e Stellar disk potential
(stars particles can form in addition)
e Rotation in both disk and CGM =
e CGM set-up so system is
~precipitation-regulated (Voit 2019)
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Defining ICs

Need density & temperature
p(x,y,z) & T(x,y,z)

1. Disk: O
2. CGM: 7?2

Voit 2019:

e Entropy vs radius
o Dark matter
o Precipitation conditions

e Hydrostatic equilibrium
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Is it precipitation?

Find mass-weighted median in 10° |

radial bins at each snapshot,
then take the median over time
in each bin.

3
Mass-weighted median traces .
the bulk of the mass without o
skewing towards high values. 1074
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Summary

e Goal: make a model galaxy that self-regulates it's star formation through
precipitation in it's circumgalactic medium (CGM)

e Simulations of isolated, idealized galaxies that directly model both the CGM and a
dense, star-forming disk

o Theidealized nature creates unique challenges: initial star formation burst can undo
carefully chosen CGM ICs

e Presented variations (with feedback) all achieve a steady late-time stellar mass
However, only some variants are precipitation-regulated.
o Others appear to shut off star formation by excessively heating the gas



