Tackling climate change with machine learning

Kelly Kochanski

There is no single solution to carbon emissions

Mitigating emissions now is much more effective than mitigating them later

Carbon emissions

Atmospheric carbon

Mitigating emissions now is much more effective than mitigating them later

...though we need to adapt to warmer temperatures regardless

Opportunities

Tackling Climate Change with Machine Learning

David Rolnick^{1*}, Priya L. Donti², Lynn H. Kaack³, Kelly Kochanski⁴, Alexandre Lacoste⁵, Kris Sankaran^{6,7}, Andrew Slavin Ross⁸, Nikola Milojevic-Dupont^{9,10}, Natasha Jaques¹¹, Anna Waldman-Brown¹¹, Alexandra Luccioni^{6,7}, Tegan Maharaj^{6,7}, Evan D. Sherwin², S. Karthik Mukkavilli^{6,7}, Konrad P. Kording¹, Carla Gomes¹², Andrew Y. Ng¹³, Demis Hassabis¹⁴, John C. Platt¹⁵, Felix Creutzig^{9,10}, Jennifer Chayes¹⁶, Yoshua Bengio^{6,7}

¹University of Pennsylvania, ²Carnegie Mellon University, ³ETH Zürich, ⁴University of Colorado Boulder, ⁵Element AI, ⁶Mila, ⁷Université de Montréal, ⁸Harvard University,

⁹Mercator Research Institute on Global Commons and Climate Change, ¹⁰Technische Universität Berlin, ¹¹Massachusetts Institute of Technology, ¹²Cornell University, ¹³Stanford University, ¹⁴DeepMind, ¹⁵Google AI, ¹⁶Microsoft Research

climatechange.ai

Mitigation

Climate change

Adaptation

Electricity Transportation Buildings & Cities Industry Farms & Forests CO2 removal

Climate prediction Social impacts Education Finance

Mitigation

Climate change

Adaptation

Electricity Transportation Buildings & Cities Industry Farms & Forests CO2 removal

Mitigation

Climate change

Adaptation

Climate prediction Social impacts Education Finance

Electricity systems

Priya L. Donti Carnegie Mellon

Transportation

Reducing transportation activity

Analyzing data
Remote sensing
Forecasting
Freight consolidation
Alternatives to transport

Modal shift

Consumer choices Coordinating modes Bike share rebalancing Predictive maintenance Enforcing regulation

Vehicle efficiency

Designing for efficiency
Detecting loading inefficiency
3-D printing
Autonomous vehicles

Alternative fuels

Research and development

Electric vehicles

Charging patterns
Charge scheduling
Congestion management
Vehicle-to-grid algorithms
Battery energy management

Buildings and cities

Industry

Climate prediction

Challenges

Cultural Barriers

Technical Barriers

Barriers to implementation

	Machine learning	Climate science
What's exciting?	Big data!	Science!
Objectives	Well-defined is useful	Broad is interesting
Explainability	Second to prediction	Often the main goal
Publications	At conferences	In journals
Data	Ideally clean and labelled	Many unlabeled features
Data formats	Images, csv, dataframes	Images, netcdf
Data use	Integral to model	Data -> theory -> model
Existing code	Python, R, Julia	C/C++, Fortran

Across many domains, the best work is done by **interdisciplinary teams** of scientists and machine learning experts

Tackling important problems with interdisciplinary work

Advice to current graduate students

- 1. Say "yes" to exciting projects
- 2. Embrace internships/practicums
- 3. That code you'll "only run once"...

Thank you for listening.

More info on climate change + ML: www.climatechange.ai

QUESTIONS?

