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Demand, Availability, and Price
• Increased capacity from renewables exacerbates variability issues
• This deficit is reflected in the electricity prices
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Renewables contribution, grid demand, and prices for July 3-5 2017 from data supplied by CAISO 

CAISO. (2017). California Independent System Operator. Retrieved from http://www.caiso.com/Pages/default.aspx



Load Shifting: Industrial Participation
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• Paired events: overproduce during low demand/emissions 
times and store extra product to use during peak hours 
when production is lower
• Frequent schedule changes, account for process 

dynamics (same time scale as scheduling decisions)
• Assumptions: excess capacity, product storage, fast 

transitions are possible

Renewables contribution, grid demand, and prices 
for July 3-5 2017 from data supplied by CAISO 

CAISO. (2017). California Independent System Operator. Retrieved from http://www.caiso.com/Pages/default.aspx
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Case study: Cryogenic Air Separation
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Industrial gas sector accounted 
for 2.62% of industrial electricity 

consumption in 2014[5]

Products: LN2, GN2

Vary the inlet feed flowrate to 
modulate production levels

Longer time horizon=more 
savings

[5] US EIA. (2017). Manufacturing Energy Consumption Survey 2014. Washington, D.C.



Storage System and Power Consumption

Storage system: 

• Product in excess of  gas demand is 
liquefied 
– Product is removed from liquefier and sent 

to meet liquid demand

– Excess is sent to storage (as liquid)

Power consumption: 

• Linear relationship between net 
work and flow through unit

5

Turbine

Compressor

Liquid N2 
storage tank

fs
out

Fp

To customer N2(l)

fl
in

Fs
in

To customer N2(g)

Liquifier

Evaporator



Hierarchy of Process Decisions
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Key goal: 
Solve the optimal 
scheduling problem in 
less than an hour on a 
standard computer

Approach:
1. Aim for a linear (or mixed-integer 

linear) program
• Linear programs have 

guaranteed optimality and 
fast solution times

• Grid models are MILPs
2. Utilize problem structure that 

enables parallel computing
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Reduced-order modeling

Bridge disparate time scales between scheduling and process 
dynamics/control

• Low-order
• Utilize input/output (closed-loop) operating data
• Only capture scheduling-relevant variables

[7] J. Du, J. Park, I. Harjunkoski, and M. Baldea, “A time scale-bridging approach for integrating production scheduling and process control,” Comput. Chem. Eng., vol. 79, pp. 59–69, Aug. 2015.
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Hammerstein-Wiener (HW) Models (Nonlinear) 
• Linear State-space block 
• Static input/output nonlinearities: piece-wise linear (PWL)

• Linearized using Special Ordered Sets of Type II (SOS2) [10]

Scale Bridging Models

𝐻(𝑢)
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝑏ℎ

𝑦 = 𝐶𝑥
𝑊(𝑦)

u wh y

Finite Step Response (FSR) Models (Linear)
• Data-driven non-parametric models used for unknown model order and time delay

Billings, S. A. (2013). Nonlinear system identification : NARMAX methods in the time, frequency, and spatio-temporal domains. Chichester, West Sussex: John Wiley & Sons. 
MATLAB. (2016). MATLAB 2016a. Natick, MA, USA: The Mathworks, Inc.
M. T. Kelley, R. C. Pattison, R. Baldick, and M. Baldea, “An MILP framework for optimizing demand response operation of air separation units,” Appl. Energy, vol. 222, pp. 951–966, Jul. 2018.
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Static blocks: Linearize nonlinearities
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𝐻(𝑢)
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Special Ordered Sets of type 2 (SOS2)
• Benefits: 

• Most linear optimization solvers have 
architecture in place to solve SOS2 
variables directly

• Result in exact linearization—no loss of 
information

• Drawbacks:
• Introduces multiple integer variables at 

each time point
• Exponential increases in solution 

time with each integer added



Dynamic block: Define discrete time grids
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MILP Reformulation: Discretization
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• Discretization:
ℎ𝑖 = 𝐻 𝑢𝑖
Ԧ𝑥𝑖,𝑗+1 = 𝐴 Ԧ𝑥𝑖𝑗 + 𝐵ℎ𝑖
𝑦𝑖𝑗 = 𝐶 Ԧ𝑥𝑖𝑗
𝑤𝑖𝑗 = 𝑊 𝑦𝑖𝑗

• Requires state continuity 
constraint between scheduling 
time slots:

𝑥𝑖,𝑗+1 = 𝑥𝑖−1,𝑗=𝑁𝑗

Common Problem
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Dynamic block size:
Ni*Nj*NSBM~35,000 variables

𝐻(𝑢)
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝑏ℎ

𝑦 = 𝐶𝑥
𝑊(𝑦) Kelley, M. T., Pattison, R. C., Baldick, R., & Baldea, M. (2018). An MILP framework for optimizing demand 

response operation of air separation units. Applied Energy, 222, 951–966. 
https://doi.org/10.1016/j.apenergy.2017.12.127



Parallelization
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Now each subproblem can be solved independently

Kelley, M. T., Pattison, R. C., Baldick, R., & Baldea, M. (2018). An MILP framework for optimizing demand 
response operation of air separation units. Applied Energy, 222, 951–966. 
https://doi.org/10.1016/j.apenergy.2017.12.127



Lagrangian Relaxation
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Re-write complicating constraints (continuity conditions):

𝑥𝑖,𝑗+1 = 𝑥𝑖−1,𝑗=𝑁𝑗 → 𝑥𝑖,𝑗+1 − 𝑥𝑖−1,𝑗=𝑁𝑗 = 𝜆𝑖,𝑚

Designate a Lagrangian multiplier: 𝛾𝑖,𝑚 = 𝑓 𝛾𝑖,𝑚−1

Optimization problem (m is iteration number):

min
𝑢𝑖

𝐽𝑚 =

𝑖



𝑗

𝑃𝑟𝑖𝑐𝑒𝑖𝒫𝑖𝑗𝑚 + 𝛾𝑖𝑚𝛾𝑖𝑚

s.t.
Timing constraints
Process model (HW/FSR)
Inventory model
Initial Conditions
Process and Quality Constraints

Solution time: 1.5 mins
Optimal operating cost: $1,014 
Cost savings: 1.12%
Optimality gap: 0.09%

Continuous Variables: 90,325 
SOS2 Variables: 1,512

Kelley, M. T., Pattison, R. C., Baldick, R., & Baldea, M. (2018). An 
MILP framework for optimizing demand response operation of 
air separation units. Applied Energy, 222, 951–966. 
https://doi.org/10.1016/j.apenergy.2017.12.127



Evolution of the solution time
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Parallelization

1.5 minutes

Linearization

11 minutes

Nonlinear SBMs

5 hours

full-order nonlinear model

97 hours
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Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An MILP framework for optimizing demand response operation of air 

separation units. Appl. Energy 222, 951-966 (2018).

2. Grid-side emissions minimization
Kelley, M. T., Baldick, R. & Baldea, M. Demand Response Operation of Electricity-Intensive Chemical Processes for Reduced 

Greenhouse Gas Emissions: Application to an Air Separation Unit. ACS Sustain. Chem. Eng. 7, 1909-1922 (2019).
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4. Additional case studies: Ammonia production, batch reactors
Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An ecient MILP framework for integrating nonlinear process dynamics 

and control in optimal production scheduling calculations. Comput. Chem. Eng. 110, 35-52 (2018).
Evaluating the Demand Response Potential of Ammonia Plants, submitted
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industrial DR scheduling
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Kelley, M. T., Baldick, R. & Baldea, M. A direct transcription-based multiple shooting formulation for dynamic optimization. 

Comput. Chem. Eng. 140, 106846 (2020).



Grid-side emissions reduction
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DR consistently lowers 
emissions even though its aim 
is to minimize operating cost

Minimizing emissions can 
increase operating cost 
during summer months



Consideration of uncertainty
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CC: chance-constrained
MH: feedback scheduling

MH and CC methods are comparable, with the MH method allowing more room for correction at rescheduling points



Extension of parallel framework to nonlinear problems
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Continuous Sequential: Blue dash-dot Discrete sequential: Black dash      Parallel solution: Red solid

Increase in problem size Increase in number of subproblems

Parallel solution can handle increase in problem size much 
better than the sequential problem

Parallel solution is beneficial up until a point, where the 
overhead at generating each independent subproblem is 
too much



Conclusions
• Developed framework to do 

optimal scheduling of large 
chemical entities for 
participation in load shifting

• Parallelization made a 
significant difference in 
terms of solution time and 
problem flexibility

• The fast solution time 
enabled many different 
directions of research 
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