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• What are we doing?
• Solving for the “single particle response” of the system: i.e., what happens when you 

inject an electron into an otherwise empty lattice?
• We propose a method that is systematically exact (methodologically unconstrained)

• Why are we doing it?
• Solve many model physical problems of interest (theorist’s curiosity)
• Eventually use to probe real materials, such as Holstein/Peierls couplings in organic 

crystals
• Develop a user-friendly, HPC-ready API for eventual open-sourced deployment

• What am I presenting today?
• Brief introduction to the electron-phonon problem and [theoretical] single-particle 

spectroscopy
• Description of our method, the Generalized Green’s function Cluster Expansion (GGCE)
• Demonstration of the method through selected results
• API highlight, and future usage of HPC

Overview
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Infinite (1D) lattice
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ElectronPhonon

The electron can “hop” from 
site to site

The electron can create and 
destroy phonons locally

The system has some energy (Hamiltonian):

• Electron energy given by free particle lattice 
dispersion: 𝜀! = −2𝑡 cos 𝑘𝑎
• “For each electron on the lattice, index it’s 

momentum quantum number and assign it 
the appropriate energy”

• Phonon energy given by phonon dispersion
• Essentially the same idea as the electrons
• We approximate a “dispersionless” 

(constant) phonon energy, Ω
• Interaction term defined by linear coupling and 

vertex
• Renders the model non-analytic

What is the electron-phonon system?
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(1) An electron is injected (removed) 
from the lattice

(2) The electron propagates through the system, 
creating and annihilating phonons

(3) After eliminating all phonons, the 
electron is removed from the lattice

Create 1ph

Hop 12x

Remove 1ph

Hop 20x

Create 1ph

Hop 1x

Create 1ph

Remove 2ph

Injection

Removal

There are many ways for the electron to propagate, 
eventually ending up somewhere with no phonons

Such a process is given by the retarded Green’s function; 
it sums all ways in which this process is possible! 

Quantum mechanics assigns the “weight” to each of 
these “paths”.

It is useful to represent the Green’s function in 
frequency-space, since its imaginary part is a spectral 

function/density of states, and is measurable
Damascelli, Hussain & Shen. 
Rev. Mod. Phys. 75, 473 (2003)

Angle-resolved photo-emission 
spectroscopy (ARPES)

Connection to 
experiment

Measuring single-particle spectra



Generalize Green’s function Cluster Expansion 
(numerically exact)

MRC, Reichman & Sous, accepted Phys. Rev. B.

Momentum Average Method (approximate)

Berciu, Phys. Rev. Lett. 97, 036402 (2006)

Exact analytic approach

Injection Removal

There are in fact an infinite number of ways for the 
electron to propagate on the lattice

• Leverages ansatz that phonons come in clouds
• Polarons
• Restricts cloud extent (M) and phonon number (N)
• No restriction on electron
• Can run on your laptop

• Generalizes the Momentum Average family to systematically 
converge with respect to M and N

• Seamlessly handles multi-phonon mode models (e.g.
Holstein+Peierls), as well as finite-temperature

• Can easily be extended to more than one dimension, multi-
carrier band, and multi-carrier (e.g. bipolaron) models

• User-friendly API

• HPC-ready firepower (PETSc+MUMPS currently)

• Scaling is a combinatorics problem: “balls in bins” 
(exponential, but empirically tractable)

• User has direct control over desired “level of theory”

• For every k,w-point, M and N value, the task at hand is to solve 
a huge system of linear equations

Methodology overview
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Holstein coupling: local phonon creation and 
annihilation occurs without electron movement

A. Macridin, Ph. D. Thesis, Rijksuniversiteit Groningen (2003)
MRC, Reichman & Sous, accepted Phys. Rev. B.

• Our results agree perfectly with 
Diagrammatic Monte Carlo 
(DMC), a popular numerically 
exact technique
• With some effort, we can obtain 

converged intermediate-
coupling results in the extreme 
adiabatic limit

Holstein model ground state results
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• Holstein (local) + Peierls (non-
local) coupling
• Real materials have multiple 

couplings mechanisms
• Equal dimensionless coupling 

strengths, various phonon 
frequencies

• We can handle this seamlessly 
in the GGCE method

MRC, Reichman & Sous, accepted PRB

Holstein+Peierls model spectra

Holstein + Peierls coupling: local and non-local phonon
creation is allowed, mechanisms compete
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Finite-temperature Holstein model spectra

Takahashi and Umezawa, Int. J. Mod. Phys. B 10, 1755 (1996).
Suzuki, J. Phys. Soc. Japan 54, 4483 (1985).

Jansen, Bonča, Heidrich-Meisner, PRB 102, 165155 (2020)

• “Thermofield double”
• Maps a finite T, n-phonon mode 

model onto a zero T, 2n-phonon 
mode model

• Ground state is no longer a 
polaron!
• Corresponds to a polaron ejecting 

>0 phonon quanta



Results in summary

• We present a variety of results to demonstrate the scope of our method
• So far, “boilerplate” HPC (threads, local memory) has been sufficient
• “Single model” results scale like “N choose M” (+nontrivial system dependence)
• Primary workhorse for aforementioned work was the NERSC Cori Haswell 

architecture: maxed out at around a 200 node simulation

• However, future problems scale worse, we’ll require massively parallel 
solvers to do this (MPI, distributed)
• Single model, finite temperature scales like “N choose 2M”
• Dual-phonon mode model at 0 temperature scales like “N choose 2M”
• Dual-phonon mode model at finite temperature scales like “N choose 4M”
• Current implementation is PETSc+MUMPS parallel sparse solvers

• Each (k,w) point can be parallel across many nodes
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from ggce.model import Model
model = Model("my_model", "info", log_file=None)
model.set_parameters(hopping=1.0, lattice_constant=1.0, temperature=0.4)
model.add_coupling("Holstein", Omega=0.5, M=3, N=9, dimensionless_coupling=3.0)
model.add_coupling("Peierls", Omega=0.8, M=2, N=4, dimensionless_coupling=2.0)

Models are constructed easily 
in just a few lines of code

from ggce.executors.serial import SerialDenseExecutor
executor = SerialDenseExecutor(model)
executor.prime()
A_kw = executor.spectrum(k_grid, w_grid, broadening)

Suite of executors which call 
various backends to solve 
linear system (numpy dense 
e.g. MKL, scipy sparse)

from ggce.executors.petsc4py.parallel import ParallelSparseExecutorMUMPS
from mpi4py import MPI
# Run with `mpiexec -np <N> python3 script.py`
executor = ParallelSparseExecutorMUMPS(model, mpi_comm=MPI.COMM_WORLD)
executor.prime()
A_kw = executor.spectrum(k_grid, w_grid, broadening)
if MPI.COMM_WORLD.Get_rank() == 0:

# Do things with spectra

Stepan Fomichev at UBC (Berciu Group)

MPI-enabled, PETSc + MUMPS 
direct sparse solver is 
essentially HPC-ready

We have generalized the Momentum Average family of methods to the numerically exact limit 
whilst allowing the user to choose their desired level of theory. We have used this method to probe 

the adiabatic limit, compute exact results, and have many more future plans for it!

API highlight
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