Proximal Trust Region Methods for Nonsmooth, Nonconvex Inverse Problems

Robert Baraldi

CSGF Annual Meeting

TRNC

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview I

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests Nonlinear ODE Reduction

Conclusions

TRNC

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Inverse Problems in Optimization

Key facet of scientific computing is inverse problem solving:

- Numerically computing parameters by minimizing a cost function
- Parameters are used to estimate unobserved data
- Just a few applications...
 - Tomography interpolation
 - Neuron Firing/biological parameter fitting
 - Machine Learning neural networks training
 - Seismic Denoising

TRNC

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

Inverse Problem Cost Functions and Regularizers I

- Separable cost functions:
 - Sum of two functions (with constraints) with exploitable characteristics; (non)smoothness, (non)convexity

 $\min_{x} f(x) + h(x)$

- Smooth term f- contains derivative information
 - Usually data misfit
 - Nonconvex in nonlinear functions PDE/ODE inverse problems, ML, etc

TRNC

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

(1)

Conclusions

Inverse Problem Cost Functions and Regularizers II

- Nonsmooth term h regularizers that often promote sparsity for ill-conditioned problems
 - Large datasets encourage overfitting
 - Model-complexity is moderated by sparsity-inducing functions, but these lack derivatives
 - Examples: sparse regression, matrix completion (rank), phase retrieval, TV regularization
 - In literature: usually convex approximations of nonconvex functions

TRNC

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

・ロト ・西ト ・ヨト ・ヨト ・ ウヘマ

Nonconvexity and nonsmoothness: Why?

Useful but difficult

- Problems: no global optimum, lack derivatives
- Theory/software exists for smoothed/convex counterparts
- Nonlinear problems have rich history, but require differentiability
- Talk Goals:
 - 1. Find algorithms for broad class of nonsmooth, nonconvex functions and regularizers
 - 2. Bridge gap between classic nonlinear opt. methods and structured nonsmooth, nonconvex problems

TRNC

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

Focus: Quasi-Newton PG + TR Method

- Two broad optimization camps: linesearch vs trust regions (TR)
 - Linesearch: pick direction, find step along that direction
 - TR: build model, optimize over restricted region
- TR methods: Fast/efficient, smooth models over l₂ regions
- Extensions to nonsmooth settings are limited
- Contribution: Extend TR methods to entire nonsmooth class f + h, provide implementation
 - Tools: Proximal Gradient (PG), TR

TRNC

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

Brief Trust Region Introduction

- Trust-region methods: numerically efficient approximations of nonlinear functions.
- \triangleright kth iteration uses surrogate quadratic model of smooth f:
 - Gradient ∇f , Hessian approximation $B_k = B_k^T$
 - Valid within a region determined by quadratic model performance and accuracy
- Saves numerical cost for expensive forward solutions.
- Nonsmooth TR exists, but is restrictive or impractical.

TRNC

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

Figure 1: TR Example Path

TRNC

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

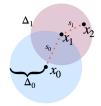
Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References



(ロ)、(型)、(E)、(E)、 E、のQで

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

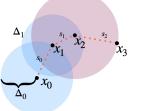
Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References



 Δ_2

(ロ)、

Robert Baraldi

nverse Problems

Trust Region Methods

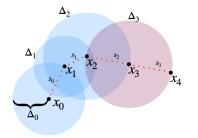
TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions



Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

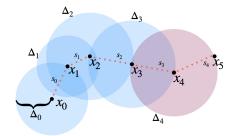
Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

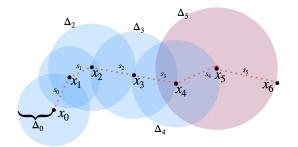
Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

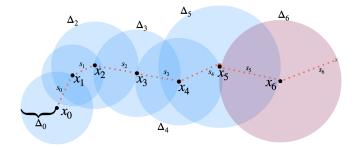
Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

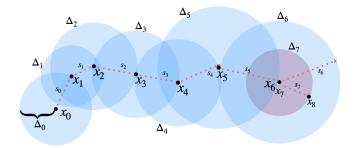
Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - • ○ ヘ () ·

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

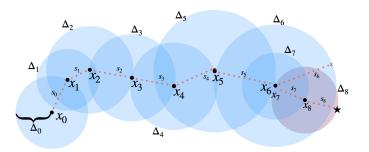
Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Recap: Problem Class and Goals

• Problem Statement: $\min_x f(x) + h(x)$

• $f \in C^1$, *h* proper, lsc.

- <u>Contribution</u>: TR method where steps are computed by minimizing simpler nonsmooth models based on PG.
- Results:
 - Global convergence
 - $O(1/\epsilon^2)$ worst-case complexity equivalent to smooth cases

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Comparisons between PG and QR method

TRNC

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

TR Analysis Outline

- 1. Assume that we generated s_k that optimizes $m_k(s; x_k)$ via PG. How do we extend TR theory to nsmth ncvx case?
- 2. How do we generate s_k via PG?

Tricky: we have an outer/overall TR problem and an inner s_k problem!

TRNC

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

TR Theoretical Results - # 1

- ► Adapting model assumptions to nonsmooth case ⇒ similar convergence of the smooth-case trust-region algorithms!
 - Monotonic Decrease in objective value
 - Eventually get an s within the trust-region (a successful iteration)
 - $\mathcal{O}(1/\epsilon^2)$ iteration complexity
 - lim_{k→∞} f(x_k) + h(x_k) → -∞ or lim_{k→∞} ξ(Δ₀; x_k) = 0: i.e. eventual first-order convergence

TRNC

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

・ロト ・西ト ・ヨト ・ヨト ・ ウタマ

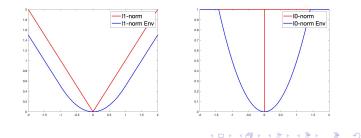
Proximal Operator - #2

Proper, lsc function $h : \mathbb{R}^n \to \overline{\mathbb{R}}$, $\nu > 0$, the Moreau envelope $e_{\nu h}$ and the proximal mapping $\operatorname{prox}_{\nu h}$ are defined by

$$e_{\nu h}(x) := \inf_{w} \frac{1}{2\nu} \|w - x\|^2 + h(w),$$
 (2a)

$$\max_{\nu h}(x) := \arg \min_{w} \frac{1}{2\nu} \|w - x\|^2 + h(w).$$
 (2b)

Figure 2: Two common proximal operators and their envelopes $(\nu = 1)$



TRNC

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

Determining Subproblem Solutions

To produce an s, we need to solve

$$\min_{s} \max_{k} := \varphi(s) + \psi(s) + \chi(s), \qquad (3)$$

- <u>Tool</u>: Proximal gradient updates
- ▶ Initialized a $s_0 = 0$ where $\psi + \chi$ is finite, it generates iterates according to

$$s_{j+1} \in \mathop{\mathrm{prox}}_{
u(\psi+\chi)} (s_j -
u
abla \varphi(s_j)), \quad j \ge 0,$$
 (4)

where $\nu > 0$ is a (sometimes) fixed step size.

TRNC

Robert Baraldi

Inverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

Every PG-step Decreases Surrogate Models I

Descent for every inner step (Bolte, Sabach, and Teboulle, 2014)

- PG converges sublinearly to a stationary point of $\varphi + \psi$.
- Results: We eventually arrive at 0 ∈ ∂(φ + ψ + χ)(s_k) i.e. a stationary point of the surrogate model

TRNC

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Theoretical Conclusions; Numerical Comparisons

Theory:

- Outer/TR Method: s_k created by nonsmooth means (PG) still converges to critical point of f + h
- Inner/PG Method: PG will create an s_k, eventually reaches critical point of model
- Next:
 - Perform model reduction on nonlinear inverse problem
 - Compare against two similar methods: PANOC and ZeroFPR

TRNC

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

・ロト ・西ト ・ヨト ・ヨト ・ りゃぐ

Classical ODE Inverse Problem

We would like to solve

$$\min_{x} \|F(x) - b\|_2^2 + h(x).$$

where F(x) is the solution of a system of ODEs.

TRNC

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

(5)

Conclusions

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Fitzhugh-Nagumo Model

The Fitzhugh-Nagumo model for neuron activation is given by

$$\frac{dV}{dt} = (V - V^3/3 - W + x_1)x_2^{-1}$$
(6a)
$$\frac{dW}{dt} = x_2(x_3V - x_4W + x_5).$$
(6b)

For $x_1 = x_4 = x_5 = 0$, it becomes the Van-der-Pol oscillator

$$\frac{dV}{dt} = (V - V^3/3 - W)x_2^{-1}$$
(7a)
$$\frac{dW}{dt} = x_2(x_3V).$$
(7b)

- Highly nonlinear and ill-conditioned
- ▶ LBFGS for $h(x) = \lambda ||x||_0$ and an ℓ_∞ -norm TR ball
- <u>Goal</u>: Fit data, exactly enforce $x_1 = x_4 = x_5 = 0$

TRNC

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

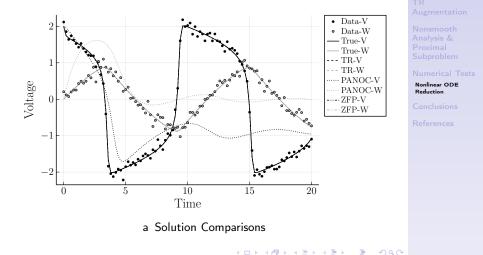
Numerical Tests

Nonlinear ODE Reduction

Conclusions

TR Results I

Figure 3: Fitzhugh-Nagumo solution ((6a), (6b)) for $h(x) = \lambda ||x||_0$ in (5) with ℓ_{∞} -norm TR and LBFGS approximation.

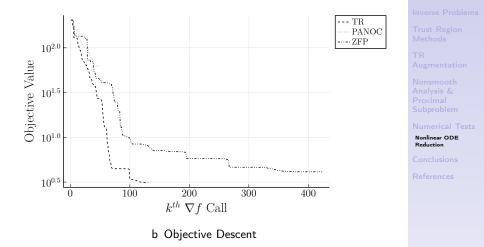


TRNC

Robert Baraldi

hverse Problems

TR Results II



ヘロト ヘ週ト ヘヨト ヘヨト

æ

TRNC Robert Baraldi

Conclusions & Current Work

Theoretical

- General Prox Operator computation?
- Extension to penalty methods
- Different B_k operators LBFGS, LSR1, Gauss-Newton/NLS
- Practical
 - Finalize numerical Julia packages/tests (https://github.com/UW-AMO/TRNC) - extensions to C++
 - Add in constraints/barrier methods
 - Implementation for harder PDE examples

TRNC

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

・ロト・日本・日本・日本・日本・日本

Future Directions

Inexact methods for PDE-constrained optimization

- Imprecise gradient, subgradients
- Inexact prox solution for incomputable proxes
- Semismooth regularizer specifics
- Fast linear algebra for ν_k computation
- Fidelity-tuning for numerical simulations
- Applications to PDE-constrained inversion in CFD, earth/climate modeling, ... huge host of national lab resources
- Numerical software/HPC implementation Trilinos/ROL, Dakota, GPU compatibility

TRNC

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

Thank you!

TRNC

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

Questions?

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

References I

J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. 1(146):459—494, 2014. DOI: 10.1007/s10107-013-0701-9.

TRNC

Robert Baraldi

nverse Problems

Trust Region Methods

TR Augmentation

Nonsmooth Analysis & Proximal Subproblem

Numerical Tests

Nonlinear ODE Reduction

Conclusions

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?