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Inverse Problems in Optimization

I Key facet of scientific computing is
inverse problem solving:
I Numerically computing parameters by minimizing a cost

function
I Parameters are used to estimate unobserved data

I Just a few applications...
I Tomography interpolation
I Neuron Firing/biological parameter fitting
I Machine Learning - neural networks training
I Seismic Denoising
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Inverse Problem Cost Functions and Regularizers I

I Separable cost functions:
I Sum of two functions (with constraints) with exploitable

characteristics; (non)smoothness, (non)convexity

minimize
x

f (x) + h(x) (1)

I Smooth term f - contains derivative information
I Usually data misfit
I Nonconvex in nonlinear functions - PDE/ODE inverse

problems, ML, etc
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Inverse Problem Cost Functions and Regularizers II

I Nonsmooth term h - regularizers that often promote
sparsity for ill-conditioned problems
I Large datasets encourage overfitting
I Model-complexity is moderated by sparsity-inducing

functions, but these lack derivatives
I Examples: sparse regression, matrix completion (rank),

phase retrieval, TV regularization
I In literature: usually convex approximations of nonconvex

functions
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Nonconvexity and nonsmoothness: Why?

I Useful but difficult
I Problems: no global optimum, lack derivatives
I Theory/software exists for smoothed/convex counterparts
I Nonlinear problems have rich history, but require

differentiability
I Talk Goals:

1. Find algorithms for broad class of nonsmooth, nonconvex
functions and regularizers

2. Bridge gap between classic nonlinear opt. methods and
structured nonsmooth, nonconvex problems
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Focus: Quasi-Newton PG + TR Method

I Two broad optimization camps: linesearch vs trust
regions (TR)
I Linesearch: pick direction, find step along that direction
I TR: build model, optimize over restricted region

I TR methods: Fast/efficient, smooth models over `2
regions

I Extensions to nonsmooth settings are limited
I Contribution: Extend TR methods to entire nonsmooth

class f + h, provide implementation
I Tools: Proximal Gradient (PG), TR
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Brief Trust Region Introduction

I Trust-region methods: numerically efficient
approximations of nonlinear functions.

I kth iteration uses surrogate quadratic model of smooth f :

I Gradient ∇f , Hessian approximation Bk = BT
k

I Valid within a region determined by quadratic model
performance and accuracy

I Saves numerical cost for expensive forward solutions.
I Nonsmooth TR exists, but is restrictive or impractical.
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Figure 1: TR Example Path
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Recap: Problem Class and Goals

I Problem Statement: minx f (x) + h(x)
I f ∈ C1, h proper, lsc.

I Contribution: TR method where steps are computed by
minimizing simpler nonsmooth models based on PG.

I Results:
I Global convergence
I O(1/ε2) worst-case complexity - equivalent to smooth

cases
I Comparisons between PG and QR method
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TR Analysis Outline

1. Assume that we generated sk that optimizes mk(s; xk)
via PG. How do we extend TR theory to nsmth ncvx
case?

2. How do we generate sk via PG?
Tricky: we have an outer/overall TR problem and an inner sk
problem!
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TR Theoretical Results - # 1

I Adapting model assumptions to nonsmooth case ⇒
similar convergence of the smooth-case trust-region
algorithms!
I Monotonic Decrease in objective value
I Eventually get an s within the trust-region (a successful

iteration)
I O(1/ε2) iteration complexity
I limk→∞ f (xk) + h(xk)→ −∞ or limk→∞ ξ(∆0; xk) = 0:

i.e. eventual first-order convergence
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Proximal Operator - #2
Proper, lsc function h : Rn → R, ν > 0, the Moreau envelope
eνh and the proximal mapping proxνh are defined by

eνh(x) := inf
w

1
2ν ‖w − x‖2 + h(w), (2a)

prox
νh

(x) := arg min
w

1
2ν ‖w − x‖2 + h(w). (2b)

Figure 2: Two common proximal operators and their envelopes
(ν = 1)
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Determining Subproblem Solutions

I To produce an s, we need to solve

minimize
s

mk := ϕ(s) + ψ(s) + χ(s), (3)

I Tool: Proximal gradient updates
I Initialized a s0 = 0 where ψ + χ is finite, it generates

iterates according to

sj+1 ∈ prox
ν(ψ+χ)

(sj − ν∇ϕ(sj)), j ≥ 0, (4)

where ν > 0 is a (sometimes) fixed step size.
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Every PG-step Decreases Surrogate Models I

I Descent for every inner step (Bolte, Sabach, and
Teboulle, 2014)

I PG converges sublinearly to a stationary point of ϕ+ ψ.
I Results: We eventually arrive at 0 ∈ ∂(ϕ+ ψ + χ)(sk) -

i.e. a stationary point of the surrogate model
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Theoretical Conclusions; Numerical Comparisons

I Theory:
I Outer/TR Method: sk created by nonsmooth means

(PG) still converges to critical point of f + h
I Inner/PG Method: PG will create an sk , eventually

reaches critical point of model
I Next:

I Perform model reduction on nonlinear inverse problem
I Compare against two similar methods: PANOC and

ZeroFPR
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Classical ODE Inverse Problem

We would like to solve

min
x
‖F (x)− b‖22 + h(x). (5)

where F (x) is the solution of a system of ODEs.
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Fitzhugh-Nagumo Model

The Fitzhugh-Nagumo model for neuron activation is given by

dV
dt = (V − V 3/3−W + x1)x−1

2 (6a)
dW
dt = x2(x3V − x4W + x5). (6b)

For x1 = x4 = x5 = 0, it becomes the Van-der-Pol oscillator

dV
dt = (V − V 3/3−W )x−1

2 (7a)
dW
dt = x2(x3V ). (7b)

I Highly nonlinear and ill-conditioned
I LBFGS for h(x) = λ‖x‖0 and an `∞-norm TR ball
I Goal: Fit data, exactly enforce x1 = x4 = x5 = 0
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TR Results I

Figure 3: Fitzhugh-Nagumo solution ((6a), (6b)) for h(x) = λ‖x‖0
in (5) with `∞-norm TR and LBFGS approximation.
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TR Results II
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Conclusions & Current Work

I Theoretical
I General Prox Operator computation?
I Extension to penalty methods
I Different Bk operators - LBFGS, LSR1,

Gauss-Newton/NLS
I Practical

I Finalize numerical Julia packages/tests
(https://github.com/UW-AMO/TRNC) - extensions to
C++

I Add in constraints/barrier methods
I Implementation for harder PDE examples
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Future Directions

I Inexact methods for PDE-constrained optimization
I Imprecise gradient, subgradients
I Inexact prox solution for incomputable proxes
I Semismooth regularizer specifics

I Fast linear algebra for νk computation
I Fidelity-tuning for numerical simulations
I Applications to PDE-constrained inversion in CFD,

earth/climate modeling, ... huge host of national lab
resources

I Numerical software/HPC implementation - Trilinos/ROL,
Dakota, GPU compatibility
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Thank you!

I Questions?
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