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Inverse Problems in Optimization RN

Robert Baraldi

Inverse Problems

> Key facet of scientific computing is
inverse problem solving:

» Numerically computing parameters by minimizing a cost
function
» Parameters are used to estimate unobserved data
» Just a few applications...
» Tomography interpolation
» Neuron Firing/biological parameter fitting
» Machine Learning - neural networks training
» Seismic Denoising
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Inverse Problem Cost Functions and Regularizers |

Robert Baraldi

Inverse Problems

» Separable cost functions:

> Sum of two functions (with constraints) with exploitable
characteristics; (non)smoothness, (non)convexity

minixmize f(x)+ h(x) (1)

» Smooth term f- contains derivative information

» Usually data misfit
> Nonconvex in nonlinear functions - PDE/ODE inverse
problems, ML, etc



Inverse Problem Cost Functions and Regularizers I TRNE
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Inverse Problems

» Nonsmooth term h - regularizers that often promote
sparsity for ill-conditioned problems

» Large datasets encourage overfitting

» Model-complexity is moderated by sparsity-inducing
functions, but these lack derivatives

» Examples: sparse regression, matrix completion (rank),
phase retrieval, TV regularization

» In literature: usually convex approximations of nonconvex
functions
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Nonconvexity and nonsmoothness: Why?

Robert Baraldi

Inverse Problems

» Useful but difficult

» Problems: no global optimum, lack derivatives

> Theory/software exists for smoothed/convex counterparts

» Nonlinear problems have rich history, but require
differentiability

» Talk Goals:

1. Find algorithms for broad class of nonsmooth, nonconvex
functions and regularizers

2. Bridge gap between classic nonlinear opt. methods and
structured nonsmooth, nonconvex problems



Focus: Quasi-Newton PG + TR Method RN
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Inverse Problems

» Two broad optimization camps: linesearch vs trust
regions (TR)
» Linesearch: pick direction, find step along that direction
» TR: build model, optimize over restricted region
» TR methods: Fast/efficient, smooth models over ¢,
regions

» Extensions to nonsmooth settings are limited

» Contribution: Extend TR methods to entire nonsmooth
class f + h, provide implementation

> Tools: Proximal Gradient (PG), TR
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Brief Trust Region Introduction
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Trust Region
Methods

» Trust-region methods: numerically efficient
approximations of nonlinear functions.

> k' iteration uses surrogate quadratic model of smooth f:

» Gradient Vf, Hessian approximation B, = B,(T
» Valid within a region determined by quadratic model
performance and accuracy

» Saves numerical cost for expensive forward solutions.

» Nonsmooth TR exists, but is restrictive or impractical.



Figure 1: TR Example Path
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Recap: Problem Class and Goals

Robert Baraldi

Trust Region
Methods

» Problem Statement: min, f(x) + h(x)
> f e, hproper, Isc.

» Contribution: TR method where steps are computed by
minimizing simpler nonsmooth models based on PG.
> Results:

» Global convergence

> O(1/€%) worst-case complexity - equivalent to smooth
cases

» Comparisons between PG and QR method



TR Analysis Outline

1. Assume that we generated s, that optimizes m(s; x)
via PG. How do we extend TR theory to nsmth ncvx
case’

2. How do we generate s, via PG?

Tricky: we have an outer/overall TR problem and an inner s
problem!
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TR
Augmentation



TR Theoretical Results - # 1

» Adapting model assumptions to nonsmooth case =
similar convergence of the smooth-case trust-region
algorithms!

» Monotonic Decrease in objective value

» Eventually get an s within the trust-region (a successful
iteration)

> O(1/€%) iteration complexity

> limy_, o F(x0) + h(x,) — —o0 or lim_, o £(Ag; x,) = 0:
i.e. eventual first-order convergence
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TR
Augmentation



Proximal Operator - #2 TRNC

Proper, Isc function h: R" — R, v > 0, the Moreau envelope
e, and the proximal mapping prox,,, are defined by

Robert Baraldi

. 2
e n(x) = IrJVf%HW—XH + h(w), (2a)
. 2
prox(x) := arg min iHW — x||” + h(w). (2b)  onemooth
vh w Analysis &
Proximal
Subproblem

Figure 2: Two common proximal operators and their envelopes
(v=1)
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Determining Subproblem Solutions

» To produce an s, we need to solve
minimize my := o(s) +(s) + x(s), (3)

» Tool: Proximal gradient updates

» Initialized a s; = 0 where ¥ + x is finite, it generates
iterates according to

siy1 € prox (s;—vVe(s;)), Jj >0, (4)
v(P+x)

where v > 0 is a (sometimes) fixed step size.
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Nonsmooth
Analysis &
Proximal
Subproblem



Every PG-step Decreases Surrogate Models | TRNE
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» Descent for every inner step (Bolte, Sabach, and e
Teboulle, 2014) oy

» PG converges sublinearly to a stationary point of ¢ + 1.

» Results: We eventually arrive at 0 € 9(¢ + 1 + x)(sk) -
i.e. a stationary point of the surrogate model



TRNC

Theoretical Conclusions; Numerical Comparisons

Robert Baraldi

» Theory:

» OQuter/TR Method: s, created by nonsmooth means
(PG) still converges to critical point of f + h
» Inner/PG Method: PG will create an s, eventually
reaches critical point of model Mmrzgerite]] W

> Next:

» Perform model reduction on nonlinear inverse problem
» Compare against two similar methods: PANOC and
ZeroFPR



Classical ODE Inverse Problem

We would like to solve
min||F(x) = b3 + h(x).

where F(x) is the solution of a system of ODEs.
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Fitzhugh-Nagumo Model

The Fitzhugh-Nagumo model for neuron activation is given by

%:(V—V3/3—W+X1)X2_1 (6a)
I = 06V — W + x5). (6b)

For x; = x4 = x5 = 0, it becomes the Van-der-Pol oscillator

N (V- V33— W)t (7a)
dTVtV = x(x3V). (7b)

» Highly nonlinear and ill-conditioned
» LBFGS for h(x) = A||x||g and an {,,-norm TR ball

» Goal: Fit data, exactly enforce x; = x4, = x5 =0
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TR Results |

Figure 3: Fitzhugh-Nagumo solution ((6

a), (6b)) for h(x) = Allxlo

in (5) with ¢, ,-norm TR and LBFGS approximation.
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Reduction



TR Results Il
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Conclusions & Current Work

Robert Baraldi

» Theoretical

» General Prox Operator computation?

» Extension to penalty methods

» Different B, operators - LBFGS, LSR1,
Gauss-Newton/NLS

» Practical

» Finalize numerical Julia packages/tests
(https://github.com/UW-AMO/TRNC) - extensions to
C++

» Add in constraints/barrier methods

» Implementation for harder PDE examples

Conclusions
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Future Directions

Robert Baraldi

» Inexact methods for PDE-constrained optimization

» Imprecise gradient, subgradients
» |nexact prox solution for incomputable proxes
» Semismooth regularizer specifics

» Fast linear algebra for v, computation

v

Fidelity-tuning for numerical simulations

» Applications to PDE-constrained inversion in CFD, Conclusions
earth/climate modeling, ... huge host of national lab

resources

» Numerical software/HPC implementation - Trilinos/ROL,
Dakota, GPU compatibility
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