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Time-domain linear PDEs
My universe: wave propagation and scattering in Rd , d = 2, 3.
Example, scalar wave equation:

∂2u

∂t2
(r, t)− c2∆u(r, t) = 0, r ∈ Ω ⊂ Rd , (1a)

u(r, 0) =
∂u

∂t
(r, 0) = 0 (1b)

u(r, t) = h(r, t) for (r, t) ∈ Γ× [0,T ], (1c)

Boundary data: h(r, t) = −uinc(r, t) (sound-soft scattering)

Important classical problem:

Motivations: nanophotonics, RADAR, communications, imaging systems, elastodynamics,
electromagnetism

Propagation in dispersive materials: c = c(ω)
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Challenging problem! Previous work

Existing Numerical Methods:

Finite-difference / Finite-element time
domain (FDTD / FETD)

Time-domain integral equations

Convolution Quadrature

Our work:

1 TGA, O. P. Bruno, Mark Lyon. High-order, Dispersionless

“Fast-Hybrid” Wave Equation Solver. Part I. [SISC 2020]

2 TGA, O. P. Bruno, Mark Lyon. High-order, Dispersionless

“Fast-Hybrid” Wave Equation Solver. Part II. [in prep]

3 TGA, O. P. Bruno. “Domain-of-dependence” Bounds and

Time Decay of Solutions of the Wave Equation.

[arXiv:2010.09002]
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Previous work: Volumetric (FDTD/FETD) methods

Must discretize entire volumetric grid

Absorbing boundary conditions / layers

Time-stepping, implies increasing:
I cost for large time
I error for large time

Generally low-order methods

Schematic:

Absorbing Layers ([Berenger JCP ’94]):

Ref: [Shin et al JCP ’12]
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Previous work: Time Domain Integral Equations (TDIEs)
Focuses on the representation formula:

u(r, t) =

∫ t

−∞

∫
Γ

G (r − r′, t − t ′)ϕ(r′, t ′)dσ(r′)dt ′ (2)

Density must satisfy the TDIE:

∫∫
[−∞,t]×Γ

G(r − r′, t − t′)ϕ(r′, t′)dσ(r′)dt′

= b(r, t), (r, t) ∈ Γ× [0,T ]

Overview ([Barnett ’20, Ha-Duong ’03]):

Difficult to guarantee stability

Complex schemes

Typically low-order convergence
Ref: [Ha-Duong ’03]
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Previous work: Convolution Quadrature—a true Hybrid method
Still a time-stepping method — with connections to discrete (Z -) Laplace transform.

Ud(z ; r) =
∞∑
n=0

ud(tn, r)z
n Z-transform⇐=====⇒ ud(tn, r) =

∫
Cλ

Ud(z ; r)

zn+1
dz .

Hybrid frequency/time method — decoupled modified Helmholtz problems for Ud :

∆Ud − s2
nUd = 0, Ud |Γ = Bsn , n = 1, . . . ,Nf

Ref: [Betcke ’17, Banjai ’10, Lubich ’94]

Relies on a choice of A-stable integrator:
BDF2, RK
Two sources of temporal approximation
error

I Time-stepping error: ∆t → 0
I Contour integral error: Nf →∞.

F Error ↑ as integration contour Cλ
approaches analyticity boundary CλU

of unknown location

Ref: [Betcke et al SISC ’17]
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Fourier Frequency/Time Hybrid Approach

Use Fourier transformation on incident wave:

U i (r, ω) =

∫ ∞
−∞

uinc(r, t) e iωt dt

=⇒ Scattering, solve e.g.: (Sωψt)(r, ω) = −U i (r, ω) =⇒

u(r, t) =
1

2π

∫ ∞
−∞

U(r, ω) e−iωt dω

Questions to address:
1 Forward transform: How many frequency-domain problems need be solved? Relationship to T inc ,

the duration of uinc?
2 Inverse transform: Need to evaluate for large times, multiple scattering. Relationship between t

and # of frequency-domain problems?

Of course, this has been done;
I . . . see [Rokhlin ’83, Douglas ’93, Zirilli et al ’00, Klaseboer et al ’17]
I [Jensen et al ’11, §8.2] discusses, but does not address, difficulties

Note: When solving wave equation in R2, nonsmooth behavior as ω → 0±.
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Long-duration incident waves
Dominant cost of Hybrid method: Frequency-domain solutions

I Number of solutions dependent on Freq-complexity of incident field

Challenge when time-dependent field has long duration:

Smooth linear chirp signal, large t Fourier transform of linear chirp

Need to resolve this in Frequency Domain(!) :-(
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Temporal Partition of Unity
Recall problem:

∂2u

∂t2
(r, t)− c2∆u(r, t) = 0, r ∈ Ω,

u(r, t) = b(r, t) for (r, t) ∈ Γ× [0,T ].

Define a partition of unity of time.
Let sk ∈ [0,T ] and windowing functions wk ∈ C∞c :

1 wk(t) = 1 in neighborhood of t = sk ,

2 wk(t) = 0 for |t − sk | > H,

3
∑K

k=1 wk(t) = 1 for all t ∈ [0,T ].

Partition incident wave (. . . then Fourier transform)

b(r, t) =
K∑

k=1

bk(r, t) =⇒ u(r, t) =
K∑

k=1

uk(r, t)
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Temporal Partitions of Unity & Fourier Transforms

The key relationship:

Bk(r, ω) =

∫ ∞
−∞

wk(t)b(r, t)e iωt dt =

∫ H

−H
bk(r, t + sk)e iω(t+sk ) dt

Factoring out e iωsk we obtain a “slow”-varying quantity:

Bslow
k (r, ω) = e−iωskBk(r, ω).

The same then holds for the frequency-domain solution:

Uslow
k (r, ω) = e−iωskUk(r, ω), (k = 1, . . . ,K )

. . . But: how do we generate all the K (time-partition) solutions Uslow
k ?

I Do we need K = O(T ) frequency-domain (integral equation) solutions?
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Windowed real signal.

Windowed Fourier Transform,
partition sk = 35.
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Windowed real signal.

Windowed Fourier Transform,
partition sk = 155.
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Going back to time: evaluating (oscillatory) Fourier integrals

Task: Accurately approximate highly oscillatory integrands at O(1) cost:

u(t) =
1

2π

∫ ∞
−∞

U(ω)e−iωtdω

Classical quadrature algorithms: Trapezoidal rule

u(tk) =
1

2π

∫ W/2

−W/2

U(ω)e−iωtkdω ≈ T

2πm

m−1∑
j=0

U(ωj)e
−iωj tk

Can be accelerated with FFTs (and fast fractional DFTs)

Implies periodicity in u(t), fails to handle structure of Fourier kernel.

To manage spurious periodicity: refine ω discretization =⇒ O(N) large-time cost and expensive
frequency-domain solves.

Requires global regularity and periodicity for high-order convergence.
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New Quadrature Rule: Fourier Expansion

Fourier basis for frequency-domain

U(ω) ≈
N/2−1∑

m=−N/2

cme
i πW mω

A signal U(ω) with finite bandlimit.

Then, evaluating term-by-term exactly,

u(t) =

∫ W

−W
U(ω)e−iωt dω ≈

N/2−1∑
m=−N/2

cm

∫ W

−W
e i

π
W (m−W

π t)ω dω

Can evaluate on t` = `∆t; arbitrary grid (∆t has no CFL limitations),

u(t`) =

N/2−1∑
m=−N/2

cmbβ`−m, where β =
W

π
∆t and bq = 2W sinc(q)
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Numerical results: (inverse) Fourier quadrature rule
Fourier (periodic) quadrature. FC (non-periodic) quadrature.
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Overall Convergence Analysis

Overall solution description:

u(r, t) =
∑
k

uk(r, t) ≈
K∑

k=1

uW ,J
k (r, t)

Two errors contributing (assuming smooth incident data):

Frequency truncation parameter W : Error decreases superalgebraically as numerical bandwidth
W →∞.

# J of Frequency Domain problems solved, J = O(1) as t →∞:
I 2D: Fixed, high-order convergence, e.g. 10th order as J →∞.

F Relies on general-purpose numerical algs introduced in [Amlani & Bruno ’16, Dominguez ’13].

I 3D: Superalgebraic as J →∞.
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Plane wave incident on kite scatterer in R2

Hybrid method solution with Gaussian-modulated plane wave incidence:

U inc(r, ω) = e−
(ω−ω0)2

σ2 e iω
k
||k|| ·r, where ω0 = 12, σ = 2, k = ex +

1

2
ey .

Thomas G. Anderson Freq/time numerics & analysis for wave scattering July 21, 2021 19 / 35


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Convergence

Solution trace at observation point (2,2).
All-time L∞ error as function of freq. discretization

refinement ∆ω.
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Long-time simulations: Whispering Gallery
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Three-dimensional scattering: II

Pulse incident field:

U inc(r, ω) = e−
(ω−ω0)2

σ2 e iω
k
||k|| ·r, where ω0 = 15, σ = 2, k = ez .
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Cost comparisons: TDIEs / Convolution Quadrature

Sphere of radius a = 1.0, incident field:

uinc (r, t) = −0.33
3∑

i=1

exp

[
(t − ei · r − 0.60− 1)2

.01

]
.

Comparison with results from Fast 3D CQM work:

— ||e||∞ Time Mem.

This work 2.2 · 10−4 4.3 1.6

BK ’14 2.1 · 10−3
(†) 40.1 56.8

(Errors are in time-domain compared with Mie theory,

Comp. Time in CPU-hours, Memory usage in GB)

Ref: [Banjai & Kachanovska JCP ’14] “Fast convolution quadrature for the wave equation in three dimensions”

Ref (†): [M. Kachanovska ’19]: private communication to TGA.
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Sphere of radius a = 1.6, incident field:

uinc (r, t) = T (t − k̂ · r), T (t) = e−(t−6)2/2
.

Comparison with results from recent TDIE work:

— ||e||∞ Time Mem.

This work 1.6 · 10−7 4.1 1.2

BGH ’20 ≈ 10−7 101.75 290

(Errors are in time-domain compared with Mie

theory, Comp. Time in minutes, Memory usage in GB)

Ref: [Banjai & Kachanovska JCP ’14] “Fast convolution quadrature for the wave equation in three dimensions”

Ref (†): [M. Kachanovska ’19]: private communication to TGA.

Ref: [Barnett, Greengard, & Hagstrom JCP ’20] “High-order discretization of a stable time-domain integral equation for 3D acoustic scattering”
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Generic boundary data

Before: frequency-domain problems...

∆Up + ω2
j Up = 0 in Ω

Up = e iκ(ωj )p·r on Γ = ∂Ω

. . . assuming separability for incident wave:

uinc(r, t)wk(t) = −bk(r, t),

bk(r, t) =
1

2π

∫ ∞
−∞

Bk(ω)e i
ω
c (p·r−ct)dω

What if it’s not as simple as this?

What if direction p varies across time?
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Generic boundary data
Generally, need to solve for many directions, at each frequency.

I With frequency cutoff W and physical size a, O((W · a)d−1)-bounded solves.
I Efficiency relies on fast direct solvers

F Think: LU factorizations; but really H-matrices, H2-matrices, etc.

Stationary point-source scattering
Moving point-source scattering.

Compared with single-incidence: N = 80 solves, 2.5% solve time increase.
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Long-time 3D simulations

utot = uinc +
∑12

k=1 uk uinck + uk , k = 1, . . . , 6.

A natural question: Do we need to evaluate all windows k in the sum?
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Estimating field sizes: boundary densities as a proxy

Given: Space-time patch to evaluate u: R× T .
Let rmax = maxr∈R,r′∈Γ |r − r′|.

Proposition (Pointwise Kirchhoff-formula bounds)

For each r ∈ R, if
‖ψk(·, t)‖L∞(Γ) < C (r)ε

for t > To , then

|uk(r, t)| ≤ ε for all t > To + rmax/c .

Q: Is it possible to estimate the density ‖ψk(·, t)‖ for all t > To?
I Better: Using information we can easily observe and efficiently compute?

F A domain-of-dependence time interval equal of length diam(Γ)/c.
I Why: Conclude ‖ψk(·, t)‖ < ε for t > To and then don’t compute uk .

F Can analyze the error committed by solution at large times and show it is bounded.
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Domain-of-dependence ψ estimate: “T -Superalg. decay”

Theorem (A. & Bruno ’20)

Let n be an arbitrary positive integer and let Γ be the boundary of an obstacle that satisfies a q-growth
condition. Let I be a domain-of-dependence interval laying before an “observation time” To . For
smooth incident data the surface density satisfies the pointwise temporal bound

sup
t>To+T

‖ψk(·, t)‖L2(Γ) ≤ C (Γ, n)T 1−n ‖ψk‖Hn(q+1)+1(I ; L2(Γ) .

Notes:

Superalgebraic decay estimate for any finite q-growth obstacle.

Uses only q-growth frequency-domain condition on real-ω axis.

I Equivalent to polynomially-bounded resolvent-operator norm as frequency ω grows
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Array of spheres: Tracking the densities

Scattering: utotk , k = 4 (1 window).

∂utot
k

∂n(r) (r, t) on Γ, k = 4

Numerics+Theory agree: uk can be neglected to

ε-tolerance based on |ψk | < ε.

I ε = 10−3, max uk error: 7.6 · 10−4.
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Implications for numerical analysis of hybrid methods

Theorem (A. & Bruno ’20)

Let Γ be the boundary of an obstacle that satisfies a q-growth condition. For smooth incident data, a
region of space R of diameter Dr and a time interval T of length Dt , there exist for every εtol > 0 an
integer M(εtol,Dr ,Dt) and certain integers Mi and Mf satisfying Mf −Mi = M so that for all incident
wavefields

sup
t∈T
r∈R

∣∣∣∣∣u(r, t)−
Mf−1∑
k=Mi

uk(r, t)

∣∣∣∣∣ ≤ C (Γ,Dr ,Dt)εtol.

Note:

Number of sum-terms M is independent of # of windows K = O(T )
I  O(1) numerical method.

Inclusion in sum determined by domain-of-dependence norm ‖ψk‖Hs (I ;L2(Γ)).
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Decay of waves: Geometry & Resonances
Q: Is it possible to predict uniform t →∞ decay rates?

’59 Wilcox: sphere
’63 Lax-Morawetz-Phillips: star-shaped domain

’67 Lax-Phillips: Trapping
??⇐=⇒ pole sequence approaching

Im(λ) = −α = 0
’69 Ralston: For trapping geometries, cannot have

E(u, t) ≤ e−αtE(u, 0)

’77 Morawetz-Ralston-Strauss:
C∞ “nontrapping” domain
’82 Ikawa: Convex-union trapping domains
(counterexample to Lax ’67)
’85 Ikawa: degenerate convex-union domain  α = 0.

Thomas G. Anderson Freq/time numerics & analysis for wave scattering July 21, 2021 32 / 35



New decay estimates for trapping domains

“Parallel trapping obstacles”:

Cube with smaller cube removed. Deep rectangular cavity.

Only known decay estimate for a connected trapping obstacle or cavity

Cases when Lax-Phillips theory yields exponential rate α = 0.
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Future Directions (on this theme)

I am currently interested in:

Large-scale HPC implementations with accelerated freq. domain solvers

Transient electromagnetics / elastodynamics

Transient wave propagation in dispersive and/or inhomogeneous media

Resonant cavities & complex/coupled structures

Inverse source problems

Laplace-transform IVPs / low-regularity pulses

Sharpening decay rates for trapping obstacles

New trapping-domain q-growth type estimates – Morawetz identities etc.

Also, @ Michigan:

Volume-potential based solvers, fluid dynamics, optimal mixing of fluids, fractional PDEs
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Thank you for your attention!!
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