Non-equilibrium thermodynamics and hydrodynamics of lipid membranes

DOE CSGF Program Review

Amaresh Sahu with Kranthi K. Mandadapu

13-15 July 2020

University of California, Berkeley

Introduction to lipid membranes: structure and behavior

Lipid membranes in the cell:

Make up the exterior cell membrane and boundary of the nucleus, Golgi complex, endoplasmic reticulum... Constitutive behavior Lipid membranes are fluid in-plane and elastic out-of-plane

S. M. Block, Stanford University

Experimental observations: Phase separation, chemical reactions

Honerkamp-Smith et al. 2012

Stanich et al. 2013

Baumgart, Hess, Webb 2003

McMahon et al. 2002

We observe coupling between:

- in-plane lipid flow, out-of-plane bending
- in-plane diffusion of different species
- protein binding chemical reactions from surrounding fluid

Modeling lipid membranes: How do we ...

... model phenomena over 200 nm–10 μ m and several seconds? Use the balance law

formalism of continuum mechanics ... describe the different shapes and morphologies lipid membranes form? Write the equations of motion in a differential geometric setting ... understand the complex coupling between bending and various irreversible processes? Develop an irreversible thermodynamic framework to determine the stresses and fluxes in the system

Viscous forces in the normal direction \Rightarrow new dimensionless number!

Membrane shape equation:

Lipid membrane tubes are unstable at large Föppl-von Kármán number!

Fluid film: $k_{\rm b} = 0$, $\Gamma \to \infty$

Physical mechanism:

- 1. initial shape change causes a change in the surface tension (Young-Laplace equation)
- 2. resultant surface tension gradients drive in-plane flows, from low to high tension

Important result:

- 1. when $k_b \neq 0$, bending and tension forces are *competing* in the normal direction
- 2. we investigate both the *mechanism* and the *dynamics* of the pearling instability!

Lipid membrane $k_b \neq 0$, $\Gamma = 2$:

Acknowledgements and Summary

$$0 = p + 2\lambda H - 2k_{b}H(H^{2} - K) - k_{b}\Delta H + 2\zeta b^{\alpha\beta}v_{\alpha;\beta} - 4\zeta v(2H^{2} - K)$$

Scriven-Love number: $SL = \frac{\zeta VL}{k_{b}}$
References: amaresh-sahu.github.io
Irreversible thermodynamics:
 $arXiv:1701.06495$, *PRE* 96 (2017)
Non-dimensionalization:
 $arXiv:1910.10693$, *PRE* 101 (2020)
Simulating fluid films:
 $arXiv:1812.05086$, *JCP* 704 (2020)
m prep: Simulating lipid membranes