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Nanophotonic free-electron lasers



FEL: resonant optical structure + free electron 
gain medium & pump



FEL principle: applicable through the full 
electromagnetic spectrum

Microwave

than those from standard storage rings, and so was a natural
choice for initial x-ray FEL studies. Once such a high-
brightness beam is created in a linac, it must be compressed
to achieve a high peak current and then accelerated to the
undulator entrance with a small transverse cross section.

a. High-brightness electron beams

Both higher peak currents and smaller transverse cross
sections increase the FEL Pierce parameter and reduce the 1D
gain length [cf. Eqs. (2) and (3)], while the electron beam
energy spread and angular spread, due to finite emittance,
increase the overall gain length from the 1D limit. The FEL
design optimization is therefore multidimensional and is well
beyond our scope here, but the typical requirements on
electron beams are

Ip ≥ 1 kA;
σγ
γ
≤ ρ=2;

εN
γ
∼ λr
4π

; ð7Þ

where εN is the normalized emittance in the transverse
directions. Note that these requirements apply to the time-
sliced beam qualities defined on the scale of the coherence
length [cf. Eq. (6)], instead of beam qualities projected over
the entire bunch length. This adds additional challenges to the
electron bunch diagnostics.
The electron injector is typically based on an rf photo-

cathode gun (Fraser, Sheeld, and Gray, 1986), which rapidly
accelerates the photoelectrons from the cathode in order to
minimize the effects of space charge forces on beam bright-
ness. A solenoid magnet positioned immediately after the
cathode focuses the beam into the next accelerating section
and accomplishes a compensation of the space charge-induced
correlated emittance growth (Carlsten, 1989). The challenge is
to extract up to 1 nC of bunch charge in a few-picosecond
pulse length with the transverse normalized emittance
εN ≤ 1 μm. Based on the experience gained from the proto-
type gun (Batchelor et al., 1992; Palmer et al., 1997), this
challenge was clearly met by the LCLS photocathode rf gun
with extensive rf design and engineering (Akre et al., 2008).
An alternative high-voltage pulsed electron gun, developed
for the low-emittance injector system of the SACLA FEL
(Togawa et al., 2007), is based on single-crystal CeB6

cathode.
The linac accelerates and compresses the electron bunch

while preserving beam brightness. Acceleration reduces the
relative energy spread and angular spread, while compression
increases the peak current by shortening the bunch length,
fulfilling Eq. (7). Figure 2 shows the LCLS accelerator layout

from the electron gun to the main dump, with two bunch
compressors and a 132-m-long undulator. Bunch compression
is typically accomplished by accelerating at an off-crest rf
phase, providing a nearly linear energy correlation, or chirp,
along the bunch length. A series of dipole magnets, usually a
simple four-dipole chicane, generates an energy-dependent
path length so that the chirped bunch compresses in length.
For more information, a comprehensive review of electron
beam dynamics in a linear accelerator for x-ray FELs has
recently been published (DiMitri and Cornacchia, 2014).
One of the most challenging issues associated with mag-

netic bunch compression is the effect of coherent synchrotron
radiation (CSR) in the bends (Saldin, Schneidmiller, and
Yurkov, 1997). The coherent radiation originating from the
very short electron bunch can interact with the bunch, leading
to increased energy spread and emittance. The bunch com-
pressors must be designed to minimize CSR effects. These
effects have been measured in both LCLS compressors and
show reasonably good agreement with available computer
modeling codes (Bane et al., 2009).
Another important collective effect associated with bunch

compression is the microbunching instability. A small density
or energy modulation of an electron beam with small energy
spread can be strongly amplified by CSR and longitudinal
space charge fields of the bunch, degrading the bunch
longitudinal phase space before the FEL interaction in the
undulator (Borland et al., 2002; Huang et al., 2004; Saldin,
Schneidmiller, and Yurkov, 2004). A special laser heater
located at the end of the injector can be used to add a small
level of slice energy spread (∼10 to 20 keV) before the bunch
compressors to “Landau damp” the instability (Huang et al.,
2004; Saldin, Schneidmiller, and Yurkov, 2004). Such a laser
heater device is implemented at LCLS (cf. Fig. 2) and has
been shown to improve the FEL gain length and saturation
power (Huang et al., 2010).

b. FEL undulators

To accommodate SASE saturation at angstrom wave-
lengths, which is required for power stability, the SASE
FEL undulator is typically on the order of 100 m long. The
undulator beam line needs focusing to keep the beam size
small and nearly constant. Quadrupole magnets are typically
inserted between undulator sections for this purpose, along
with beam position monitors and correctors to measure and
control the beam trajectory.
Among the various design considerations and tolerances

on FEL undulators, two very stringent requirements are
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Superradiant Smith-Purcell Emission
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A diffraction grating mounted in the electron beam focal region of a scanning electron microscope

has been used to produce superradiant emission over the 300–900 mm wavelength range. Feedback
is provided by the grating itself and the electron beam is focused and positioned over the grating
by the microscope’s electron optical system. Extensions of this technique promise a new tunable,
coherent, cw source for the difficult to access far infrared (30–1000 mm) range of the spectrum.
[S0031-9007(97)05020-5]

PACS numbers: 41.60.–m, 07.57.Hm, 52.75.Ms

This Letter contains a description of a new type of
grating-based, tunable source that operates in the far-
infrared (FIR) region of the spectrum. Superradiant
emission is achieved using a low energy spread, low
emittance (“bright”) electron beam, and a diffraction
grating. Distributed feedback is provided by the grating
itself. The device, which is described as a grating coupled
oscillator (GCO), has the potential for operating over the
entire, difficult to access, FIR (30–1000 mm) region of
the spectrum.
A traditional means of pushing the operating regime of

electron beam driven, coherent radiation sources toward
significantly shorter wavelengths has been to move the
electron beam energy into the relativistic regime. The
present results provide clear evidence that significant
decreases in beam energy spread and emittance, i.e.,
improvements in beam quality, can also be used for this
purpose. This observation applies equally to the broad
class of beam-field coupling schemes and not just the
diffraction gratings used in the present Letter.
When an electron passes close to the surface of a metal

diffraction grating, radiation is produced at wavelengths
that can be determined from the expression

l ≠
l
jnj

√
1
b

2 sinu

!
. (1)

In Eq. (1) l is the grating period, b ; yyc is the electron
velocity relative to the speed of light (c), u is the angle of
emission measured from a direction normal to the surface
of the grating, and n is the spectral order. Light produced
in this manner was first observed by Smith and Purcell [1],
and it has come to be known as Smith-Purcell radiation.
The original work of Smith and Purcell was carried out

at visible wavelengths as were a number of subsequent
investigations [2,3]. The effect of the stimulated compo-
nent of the emission process was negligible in these ex-
periments. At long (mm) wavelengths devices based on
gratings have been operated as coherent oscillators, but in
order to achieve threshold, feedback elements have been
required [4,5]. In the present case the distributed feedback
on the grating is used for this purpose. The grating serves
as both the coupling element and the resonator. A sub-

stantial fraction of the energy transferred from the beam
to the field is presumed to be in the form of nonradia-
tive space harmonics and external feedback elements are
not required. In principle, however, their use may pro-
vide additional flexibility in the design. The open surface
resonator together with the high quality electron beam fa-
cilitates operation in the FIR wavelength range.
The device uses the beam of a scanning electron micro-

scope (SEM), a schematic of which is shown in Fig. 1.
The SEM is capable of generating a continuous, cylindri-
cal, 20–40 keV, a $20 mm (waist) diameter beam with a
total current #1 mA. The energy spread is not measured
directly but it is presumed to be small given the design
parameters of the electron microscope. Emittance is mea-
sured using a 500 mm slit. It is typically in the range
of 2 3 1022 p mmmrad in the present system and varies
by less than a factor of 2 over the range of current used in
these experiments. A rectangular grating profile was cho-
sen, and the theory of van den Berg [6] was used to de-
termine the grating dimensions that maximize the power
of first order spontaneous radiation (n ≠ 21) at u ≠ 0.

FIG. 1. Schematic of the modified SEM.
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General (semi-analytical) description of 
nanophotonic FELs
Field expandable in terms of a few modes:

2

time-dependent electric field in the system as

E(r, t) =
X

m

↵m(z, t)Em(r, t)e�i!mt + c.c, (2)

where ↵m(z, t) is a time-dependent envelope function for each mode. For a periodic system, Em(r, t) =
um(r, t)eikmz, with km the Bloch wavevector and !m = !(km).

A. Approximations

The Newton-Lorentz-Maxwell equations are too general to be solved in closed form. Therefore, we
will apply a series of approximations that allows a lot of analytical insights that do capture many of
the known features of free-electron lasers.

1. Slowly-varying envelope approximation

For the case of Bloch modes, we assume that some number of (resonant/phase-matched) Bloch
modes are excited. Suppose we write a general solution in an expansion in Bloch modes as

E(r, t) =
X

bands,n

Z
dk
2⇡
↵nk(t)ukn(r)eikz�i!knt. (3)

Due to the phase-matched nature of the interaction, we may assume that the envelopes are highly
peaked in k-space around some resonant harmonics k0. In that case, assuming that the Bloch functions
vary slowly in k (in the support of ↵k), we have that

E(r, t) =
X

n

uk0,neik0z�i!nk0 t
Z

dk
2⇡
↵kei(k�k0)z�i(k�k0)vgt ⌘ ↵k0 (z � vgt, t)Ek0 (r)e�i!nk0 t. (4)

where k0 is the peak of ↵k and is assumed to coincide with phase-matching points between the
electron and the photon. We may then express our general solution allowing for the possibility of
multiple phase-matching points (allowing us to analyze multi-mode free electron lasers) as:

E(r, t) =
X

resonances m

↵m(z � vgt, t)Em(r)e�i!mt, (5)

where I have replaced the slightly cumbersome k0 with m. Let us now plug this into the Maxwell
equation for the field (assuming for now a non-dispersive medium / operation in a transparency
window)

(r ⇥ r ⇥ + ✏
c2 @

2
t )E(r, t) = �µ0@tJ. (6)

Plugging this into the Maxwell equations, and neglecting second-derivatives of the envelope function,
we get:

X

n

✓ ✏
c2 (!2

n � !2
n)
◆
↵nEne�i!nt + e�i!nt�2i!n✏

c2 En
⇣
@t + vgn@z

⌘
↵n = �µ0@tJ(r). (7)

Projecting out a particular mode m yields

X

n

e�i!nt
Z

d3r � 2i!n✏E⇤m · En
⇣
@t + vgn@z

⌘
↵n = �

1
✏0
@t

Z
d3r E⇤m · J (8)
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2. Coarse graining

The projection is slightly complicated by the fact that the integrals also include the envelope function,
which also has some spatial variation, and over a gain length, this variation is not at all negligible.
However, over a length scale much longer than the wavelength, but much shorter than the gain
length (in practice, at least 10�), we expect a “local orthogonality” to hold. Therefore, let us coarse
grain the equation, defining quantities only over cells much longer than the wavelength, but much
smaller than the gain length. In practice, when solving these equations numerically, our spatial grid
will have a spacing which satisfies exactly this pair of inequalities. In practice, this will mean that
the z � integration is over an interval [z � �z/2, z + �z/2), where �z is the length-scale satisfying
� ⌧ �z ⌧ Lgain. Additionally, this allows us to pull the envelope function out of the integral.
Assuming that these inner-products satisfy

Z
d2r?

Z

�z

dz ✏E⇤m · En =
�z
L
�m,n, (9)

with L a normalization length, we have

� 2i!m
⇣
@t + vgm@z

⌘
↵m = �

Lei!mt

✏0�z
@t

Z
d2r?

Z

�z

dz Em(r) · J(r, t) (10)

Right now, we are assuming a fully Hermitian problem. Let us take into account a small amount of
loss by the replacement @t ! @t + ⌧�1

m with ⌧�1
m the lifetime of the mth resonance. Finally, taking into

account that the current is a sum of delta functions, we have

⇣
@t + vgm@z + ⌧

�1
m

⌘
↵m =

qL
2i!m✏0�z

X

i2vol(z)

vi(t) · rE⇤(ri(t)) · vi(t)ei!mt, (11)

with vol(z) being the 3D volume inside the interval [z � �z/2, z + �z/2). Notice here that we have
also neglected a term proportional to the acceleration of the electrons: for all reasonable values of
the acceleration, this term is negligible.

To simplify matters further, we perform a coordinate transformation so that the spatial coordinate
follows the electron bunch. In particular, defining t0 = t and z0 = z � v0t, with v0 the center-of-mass
velocity of the beam, we have that

⇣
@t0 + (vgm � v0)@z0 + ⌧

�1
m

⌘
↵m =

qL
2i!m✏0�z

X

i2vol(z0)

vi(t) · rE⇤(ri(t)) · vi(t)ei!mt. (12)

As can be seen, the spatial derivative depends on the “slippage” between the envelope of the field
and the electron beam.

3. Long-bunch approximation

Suppose that the slippage of the photon and the electron over an interaction time (dictated for
example by the length of the grating) is small compared to the bunch size. In that case, each slice of
the electron beam sees essentially the same part of the wavepacket during the entire interaction.

Suppose further that we started this problem with a seed field (as in a free-electron laser amplifier)
whose amplitude was uniform over the electron bunch. Then, during the interaction, each part of the
beam sees the same amplitude, and evolves the field in the same way (assuming the average phase is
uniform over the bunch). The field also evolves in a uniform way. As a result, it is thus permissible
to neglect the slippage term altogether. Additionally, because the average phase (“bunching”) is
uniform, the sums over phases can in be computed over the whole beam. In particular, it is the case
that

P
i2vol(z0)

= �z
Lb

P
i
, with Lb the length of the bunch, not necessarily equal to L (though it will not
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Ab initio free electron laser physics

Benefits?
• Pulsed systems: highest intensities
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An ultra-low threshold FEL based on a silicon 
racetrack resonator
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Abstract: We show that nanophotonic structures enable the possibility of realizing lasers based on 
stimulated emission by free electrons. The associated threshold beam currents are in the nanoampere 
range, and could be realized in electron microscopes.  ©2020 The Authors   

      
     There has been a resurgence of interest in the interactions of free electrons with nanophotonic structures. Spontaneous 
emission by free electrons near nanostructures is being explored in the context of novel radiation sources from infrared to 
X-ray frequencies [1a-d]. One possibility that has remained unexplored is the possibility of nanophotonic light sources 
based on free-electron stimulated emission, and consequently, achieving laser-oscillation based on free-electron gain 
media. Such concepts have been widely explored at microwave frequencies (as in traveling-wave tubes) [2a], terahertz 
frequencies [2b], and even X-ray frequencies (in free-electron lasers, based on ultra-relativistic electrons in strong 
magnetic fields) [2c]. Nevertheless, the physical process leading to laser-oscillation has always been driven by fields of 
wavelengths on the scale of a fraction of a millimeter or much longer. Using nanostructures for lasing in the optical 
spectrum has never been explored, possibly due to the stringent constraints concomitant with their small dimensions, such 
as the very low electron beam currents associated with the small beam sizes needed. However, the high Q-factors and 
small modal volumes achievable in state-of-the-art nanophotonic structures motivate our study and surprising findings. 
Here, we develop for the first time a general theory of free-electron lasing, valid in general nanophotonic geometries. 
Based on this theory, we find state-of-the-art nanophotonic structures which allow lasing to occur with average electron 
beam currents as low as a few nanoamperes. Such a current is many orders of magnitude below that of any proposed or 
existing coherent free-electron light source, and renders possible the concept of a nanophotonic free-electron laser.  
     Consider a beam of electrons interacting with an optical structure with either discrete or continuous translational 
symmetry along the direction of electron propagation (the !-direction). The electron interacts efficiently with modes 
which are phase-matched i.e., for which " = $%, where	" is the mode frequency, $ is a wavevector (in a periodic system, 
it is the Bloch wavevector plus some reciprocal lattice vector), and % is the electron velocity. In typical settings of free-
electron interaction with nanostructures, the electrons only emit light spontaneously [1a-d]. However, for sufficiently high 
electron currents compared to the losses (i.e., above the “threshold current”), enough radiation can build up to substantially 
modulate the trajectories of the electrons in the beam, such that the electrons, on average, lose (kinetic) energy to the field 
(stimulated regime). We have developed a fully general theory of this process, which can be applied to arbitrary 
nanophotonic structures. The theory takes into account arbitrary phase-space distributions of the electrons at the input, is 
fully three-dimensional, and accounts for nonlinearity and saturation effects. We now discuss the results of this theory.  
     As a first concrete example, consider the system of Fig. 1a, a silicon-on-insulator “racetrack” resonator with a beam 
of electrons traveling parallel to one of the straight ridge-waveguide segments of length L (235 nm total height, 1.5 'm 
top width, and 2.85 'm bottom width, see Fig. 1a (bottom)). The electron beam couples efficiently to phase-matched 
modes of the waveguide. Phase-matched modes are identified in Fig. 1a from the intersections of the “electron line” (" =
$%) with the waveguide dispersion. We show crossings for electron velocities typical of a scanning electron microscope 
(SEM [1a]) and those typical of a transmission electron microscope (TEM [3a,b]). Assuming as is often the case that the 
electron beam is well-collimated over the interaction length (a few hundred microns at most), and that the electrons 
primarily travel parallel to the waveguide, we find that the gain (per unit time) provided by the electrons, into a mode m,  
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Figure 1: Silicon nanophotonic free-electron lasing in electron microscopes. (a, left) Schematic of an electron beam passing over a silicon-on-
insulator racetrack resonator. (a, right) dispersion of the ridge-waveguide and free-electron dispersion (a, bottom) Profile of the mode with the lowest 
threshold current. (b) Gain as a function of electron velocity for different propagation lengths (L), currents (I), and beam diameters (d), for beam 
conditions in a scanning electron microscopes (SEM) and (c) associated threshold currents for the first ten transverse modes of the ridge waveguide. 
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Here, we develop for the first time a general theory of free-electron lasing, valid in general nanophotonic geometries. 
Based on this theory, we find state-of-the-art nanophotonic structures which allow lasing to occur with average electron 
beam currents as low as a few nanoamperes. Such a current is many orders of magnitude below that of any proposed or 
existing coherent free-electron light source, and renders possible the concept of a nanophotonic free-electron laser.  
     Consider a beam of electrons interacting with an optical structure with either discrete or continuous translational 
symmetry along the direction of electron propagation (the !-direction). The electron interacts efficiently with modes 
which are phase-matched i.e., for which " = $%, where	" is the mode frequency, $ is a wavevector (in a periodic system, 
it is the Bloch wavevector plus some reciprocal lattice vector), and % is the electron velocity. In typical settings of free-
electron interaction with nanostructures, the electrons only emit light spontaneously [1a-d]. However, for sufficiently high 
electron currents compared to the losses (i.e., above the “threshold current”), enough radiation can build up to substantially 
modulate the trajectories of the electrons in the beam, such that the electrons, on average, lose (kinetic) energy to the field 
(stimulated regime). We have developed a fully general theory of this process, which can be applied to arbitrary 
nanophotonic structures. The theory takes into account arbitrary phase-space distributions of the electrons at the input, is 
fully three-dimensional, and accounts for nonlinearity and saturation effects. We now discuss the results of this theory.  
     As a first concrete example, consider the system of Fig. 1a, a silicon-on-insulator “racetrack” resonator with a beam 
of electrons traveling parallel to one of the straight ridge-waveguide segments of length L (235 nm total height, 1.5 'm 
top width, and 2.85 'm bottom width, see Fig. 1a (bottom)). The electron beam couples efficiently to phase-matched 
modes of the waveguide. Phase-matched modes are identified in Fig. 1a from the intersections of the “electron line” (" =
$%) with the waveguide dispersion. We show crossings for electron velocities typical of a scanning electron microscope 
(SEM [1a]) and those typical of a transmission electron microscope (TEM [3a,b]). Assuming as is often the case that the 
electron beam is well-collimated over the interaction length (a few hundred microns at most), and that the electrons 
primarily travel parallel to the waveguide, we find that the gain (per unit time) provided by the electrons, into a mode m,  
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Figure 1: Silicon nanophotonic free-electron lasing in electron microscopes. (a, left) Schematic of an electron beam passing over a silicon-on-
insulator racetrack resonator. (a, right) dispersion of the ridge-waveguide and free-electron dispersion (a, bottom) Profile of the mode with the lowest 
threshold current. (b) Gain as a function of electron velocity for different propagation lengths (L), currents (I), and beam diameters (d), for beam 
conditions in a scanning electron microscopes (SEM) and (c) associated threshold currents for the first ten transverse modes of the ridge waveguide. 
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spectrum has never been explored, possibly due to the stringent constraints concomitant with their small dimensions, such 
as the very low electron beam currents associated with the small beam sizes needed. However, the high Q-factors and 
small modal volumes achievable in state-of-the-art nanophotonic structures motivate our study and surprising findings. 
Here, we develop for the first time a general theory of free-electron lasing, valid in general nanophotonic geometries. 
Based on this theory, we find state-of-the-art nanophotonic structures which allow lasing to occur with average electron 
beam currents as low as a few nanoamperes. Such a current is many orders of magnitude below that of any proposed or 
existing coherent free-electron light source, and renders possible the concept of a nanophotonic free-electron laser.  
     Consider a beam of electrons interacting with an optical structure with either discrete or continuous translational 
symmetry along the direction of electron propagation (the !-direction). The electron interacts efficiently with modes 
which are phase-matched i.e., for which " = $%, where	" is the mode frequency, $ is a wavevector (in a periodic system, 
it is the Bloch wavevector plus some reciprocal lattice vector), and % is the electron velocity. In typical settings of free-
electron interaction with nanostructures, the electrons only emit light spontaneously [1a-d]. However, for sufficiently high 
electron currents compared to the losses (i.e., above the “threshold current”), enough radiation can build up to substantially 
modulate the trajectories of the electrons in the beam, such that the electrons, on average, lose (kinetic) energy to the field 
(stimulated regime). We have developed a fully general theory of this process, which can be applied to arbitrary 
nanophotonic structures. The theory takes into account arbitrary phase-space distributions of the electrons at the input, is 
fully three-dimensional, and accounts for nonlinearity and saturation effects. We now discuss the results of this theory.  
     As a first concrete example, consider the system of Fig. 1a, a silicon-on-insulator “racetrack” resonator with a beam 
of electrons traveling parallel to one of the straight ridge-waveguide segments of length L (235 nm total height, 1.5 'm 
top width, and 2.85 'm bottom width, see Fig. 1a (bottom)). The electron beam couples efficiently to phase-matched 
modes of the waveguide. Phase-matched modes are identified in Fig. 1a from the intersections of the “electron line” (" =
$%) with the waveguide dispersion. We show crossings for electron velocities typical of a scanning electron microscope 
(SEM [1a]) and those typical of a transmission electron microscope (TEM [3a,b]). Assuming as is often the case that the 
electron beam is well-collimated over the interaction length (a few hundred microns at most), and that the electrons 
primarily travel parallel to the waveguide, we find that the gain (per unit time) provided by the electrons, into a mode m,  
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Figure 1: Silicon nanophotonic free-electron lasing in electron microscopes. (a, left) Schematic of an electron beam passing over a silicon-on-
insulator racetrack resonator. (a, right) dispersion of the ridge-waveguide and free-electron dispersion (a, bottom) Profile of the mode with the lowest 
threshold current. (b) Gain as a function of electron velocity for different propagation lengths (L), currents (I), and beam diameters (d), for beam 
conditions in a scanning electron microscopes (SEM) and (c) associated threshold currents for the first ten transverse modes of the ridge waveguide. 
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An FEL based on an high-Q photonic crystal 
resonance



Potential realizations
Parameters realizable:
• Schottky field emission sources, 
• Racetrack resonators, photonic 

crystals with high-Q BICs

Major difficulty: long enough 
interaction

Promising work: grazing angle in 
ultrafast TEMs (at lower currents)

constructive over hundreds of microns, resulting in a modulated electron wavefunction that 
forms a quantized plateau extending over hundreds of electron-volts.  

 

Results 

The experimental setup that we use to demonstrate the coherent resonant interaction and 
the resulting Cherenkov phase-matching condition is an ultrafast transmission electron 
microscope (UTEM)35-36. The key to the effects below is our alignment of the electron to graze 
a surface over hundreds of microns37 in the UTEM, so that it remains a few hundred nanometers 
from the surface (Fig. 2). This interaction condition is, to the best of our knowledge, the first 
realization of such grazing-angle conditions in any transmission electron microscope (see 
Methods). Using the grazing-angle interaction we maximize the strength of the electron–laser 
interaction. 

Figure 2. Experimental setup. (a) Illustration of the ultrafast transmission electron microscope (UTEM) setup, 
showing the grazing-angle interaction with a prism. The electron pulse is generated by photoexcitation of electrons 
with a UV pulse. The electrons graze the surface of a prism and interact with an evanescent field generated by 
another laser pulse that enters the prism and undergoes total internal reflection from the same surface. We measure 
the electrons with an electron energy spectrometer. (b) Zoom-in on the interaction area along the prism surface. 
Inset: an image of the prism positioned on the edge of a hole through which the electrons pass (parameters defined 
in Methods). 
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properties of light emission based on the electron energy. Importantly, the delocalized quantum 
wave nature of free electrons gives additional opportunities to control light–matter interactions by 
shaping electron wavefunctions. For example, one can shape the wavefunction to display 
symmetries which are compatible (or incompatible) with the symmetry of the photonic 
quasiparticle field, thus leveraging selection rules to control the possible interactions. Additional 
important effects appear when electrons interact with strong fields of photonic quasiparticles, 
which enable coherent energy exchange by means of absorption and stimulated emission. In sum, 
these effects may enable new and enhanced particle detection schemes, compact light sources from 
infrared to even X-ray frequencies, and breakthrough platforms for electron microscopy with 
nanometer and femtosecond resolution.  

 
Although free and bound electron phenomena at first appear unrelated, and are typically 

connected to different fields of research, it is possible, and even illuminating, to take a unified 
view of these phenomena.  

 
Figure 1: Diagrammatic representation of physical processes contained within macroscopic QED (MQED), as 
they pertain to different types of matter (bound, free, and Bloch electrons), as well as different types of photonic 
quasiparticles (photons, photons in a homogeneous medium, photonic crystal photons, polaritons (plasmon, phonon, 
exciton, magnon), and even pure phonons. Processes with no standard or recent reference associated them are marked 
with a [*]. Each MQED diagram corresponds to a different, sometimes known phenomenon, while others correspond 
to phenomena which have thus far not been explored. Note that while we represent mostly spontaneous emission 
effects here, all spontaneous processes also have stimulated processes, as well as absorption (inverse) processes 
associated with them. For example, corresponding to the Cherenkov effect is the inverse Cherenkov effect, where an 
emitter absorbs a photon in a medium instead of emitting it. We also note here that in some cases, the emitted 
quasiparticle has a vacuum far-field component, leading to other effects. For example, a plasmon emitted by an 
electron can couple to the far-field in nanoparticles, as a mechanism of cathodoluminescence. Or a medium photon 
associated with an interface can have a vacuum component, leading to transition radiation.  
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