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Motivation

Image from https://deadhomersociety.com/2016/06/05/quote-of-the-day-2632/



https://deadhomersociety.com/2016/06/05/quote-of-the-day-2632/
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micals.org/blog.

*From http://gender-che


http://gender-chemicals.org/blog

The Toxic Substances Control Act (TSCA)

Prioritization
(9-12 months)

Action to
address
unreasonable
risks

(2-4 years)

*From https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/how-epa-assesses-chemical-safety.
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https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/how-epa-assesses-chemical-safety

Chemical testing

In Vivo In Vitro In Silico

Figure: Means of chemical testing, from slow and expensive to fast and cheap.
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Chemical testing

In Vitro

Figure: Fast(er) and cheap(er).
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ToxCast: EPA’s high-throughput screening program

|

Figure: ToxCast has data on over 9,000 chemicals with over 1,000 assay endpoints. (Left)
High-throughput assay plate is filled. (Right) High-throughput screening robot.




Data in ToxCast
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5-Methyl-1H-benzotriazole dose response

5-Methyl-1H-benzotriazole structure
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Chemical testing

In Silico

Figure: Fast(est) and cheap(est).
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What's the use?

P Learning about toxicologically relevant
chemical distance in silico helps in:

m Designing new studies.
m Increasing efficiency of studies.

m Supplementing the results from lab-based
studies.

m Bridging the gap between the # of
chemicals of interest and the # with
known toxicological profiles.
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Chemical structure (BPA)

Molecular Number of
weight: Oxygen: 2

2287\

Narumi-type
topological Number of
index: 11.326 aromatic rings: 2

Figure: Software such as Mold2 extract chemical features using SMILES. The SMILES for Bisphenol A
(BPA) is CC(C)(C1=CC=C(C=C1)0) C2=CC=C(C=C2)0.
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“Near” in structure but “far” in activity
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Figure: 4-tert-Butylphenol (left solid/solid, right
top) and tert-Butyl phenyl ketone (left
open/dashed, right bottom).
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Key model components

» Factor modeling

» Gaussian processes

» Sparsity-inducing priors
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Chemical “distance” and prediction

» In mathematical notation

Yi= Nni+e, Xi=0n+ =Zv+e.

Dx1 DxK Kx1 Dx1 Sx1 SXK Kx1 SxJ Jx1 Sx1

> Toxicity “distance” between chemicals i and j can be represented in the shared factor
space (i.e., how far apart the vectors n; and 7; are)

» Two chemicals that are very close in this space will have similar dose-response curves, and
similar toxicity-relevant features

> They may not have similar toxicity-irrelevant features
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xCast results (A)

N\ entries First column of A Third column of A
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Significant features associated with first column of A

» The number of group X-C on aromatic

First column of A ring

0.5 T ..

0.4- RN » Molecular regresson coefficients surface
@)} . .{' '.\" .
c J 5 N LogP index
.= 0.3 # .s
© 2 *
8 0.2 4 ,/ » Sum eigenvalue weighted by van der
— 0.1 L= Waals distance matrix

» Sum of topological distance between the
vertices O and Cl

» Number of Chlorine

In the training set, the chemicals having the largest expected value for 177 are Mercuric chloride, Benzyltriphenylphosphonium chloride, Sodium chlorite, 1,1-
Bis(3-cyclohexyl-4-hydroxyphenyl)cyclohexane, and Basic Blue 7. All but 1,1-Bis(3-cyclohexyl-4-hydroxyphenyl)cyclohexane, which is a known irritant, are known
toxins.
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Chemical distance
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“Fill in™ or
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Chemical 1

The three “farthest” chemicals in the hold-out set. From left to right: lodoform, Triethyltin
bromide, and Indeno(1,2,3-cd)pyrene.
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Predictions for hold-out activating chemicals

Indeno(1,2,3-cd)pyrene 4-tert-Butylphenyl Vernolate
salicylate
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Predictions for hold-out non-activating chemicals
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What next (for this model)?

Future work includes:
» Using distance to inform mixture models
» Direct model specification of active/inactive
» Nonlinear dimension reduction
» Linking (combinations of) assays to human health outcomes

P Integrating information from multiple assays and multiple feature sets
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What next (for me)?
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Delivering science and technology to protect our nation and promote world stability
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Computing and CSGF

CSGF gave me the freedom to explore beyond just my advisor's projects:

>

First experience with Gaussian processes was a LANL practicum my first summer in grad
school

Through work on this toxicology project, | met a wonderful collaborator who was
interested in GPs

Developed a new fast GP algorithm

Will be able to pull that in to expand this method to bigger applications
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Thanks and CSGF
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Thanks at Duke are due to my advisor, Amy Herring, and the rest of my committee. I'm also
grateful to Matt Wheeler.

At LANL | am particularly grateful to Earl Lawrence, Dave Osthus, and Kary Myers. The
motivation to finish my PhD came from wanting to work with such amazing people!
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