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Motivation

Image from https://deadhomersociety.com/2016/06/05/quote-of-the-day-2632/.
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Motivation

*From http://gender-chemicals.org/blog.
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The Toxic Substances Control Act (TSCA)
	

Prioritization	
	

(9-12	months)	

Action	to	
address	

unreasonable	
risks	

	

(2-4	years)	

Risk	
evaluation	for	
high	priority	
chemicals	

	

(3-3.5	years)	

*From https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/how-epa-assesses-chemical-safety.
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Chemical testing

													

In	Vivo	 In	Vitro	 In	Silico	

Figure: Means of chemical testing, from slow and expensive to fast and cheap.
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Chemical testing

													

In	Vivo	 In	Vitro	 In	Silico	

Figure: Fast(er) and cheap(er).
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ToxCast: EPA’s high-throughput screening program

		 	

Figure: ToxCast has data on over 9,000 chemicals with over 1,000 assay endpoints. (Left)
High-throughput assay plate is filled. (Right) High-throughput screening robot.
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Data in ToxCast

5−Methyl−1H−benzotriazole dose response

Chlorobenzilate dose response

Sulfamic acid dose response

5−Methyl−1H−benzotriazole structure

Chlorobenzilate structure

Sulfamic acid structure

4−Phenylphenol dose response 4−Phenylphenol structure
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Chemical testing

													

In	Vivo	 In	Vitro	 In	Silico	

Figure: Fast(est) and cheap(est).
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What’s the use?

I Learning about toxicologically relevant
chemical distance in silico helps in:

Designing new studies.

Increasing efficiency of studies.

Supplementing the results from lab-based
studies.

Bridging the gap between the # of
chemicals of interest and the # with
known toxicological profiles.
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Chemical structure (BPA)

Number of 
Oxygen: 2 

Number of 
aromatic rings: 2 

Narumi-type 
topological 
index: 11.326 

Molecular 
weight: 
228.295 

Figure: Software such as Mold2 extract chemical features using SMILES. The SMILES for Bisphenol A
(BPA) is CC(C)(C1=CC=C(C=C1)O) C2=CC=C(C=C2)O.
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“Near” in structure but “far” in activity“Near” in structure but “far” in activity
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Figure: 4-tert-Butylphenol (left solid/solid, right
top) and tert-Butyl phenyl ketone (left
open/dashed, right bottom).
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Key model components

I Factor modeling

I Gaussian processes

I Sparsity-inducing priors

Leveraging Structure
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Model visual summary
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Chemical “distance” and prediction

I In mathematical notation

Yi
D×1

= Λ
D×K

ηi
K×1

+ εi
D×1

, Xi
S×1

= Θ
S×K

ηi
K×1

+ Ξ
S×J

νi
J×1

+ ei
S×1

.

I Toxicity “distance” between chemicals i and j can be represented in the shared factor
space (i.e., how far apart the vectors ηi and ηj are)

I Two chemicals that are very close in this space will have similar dose-response curves, and
similar toxicity-relevant features

I They may not have similar toxicity-irrelevant features
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ToxCast results (Λ)

k

d

Λ entries

0.0
0.1
0.2
0.3
0.4
0.5

−2 −1 0 1 2

Dose

Lo
ad

in
g

First column of Λ

−0.05

0.00

0.05

0.10

−2 −1 0 1 2

Dose

Lo
ad

in
g

Second column of Λ

−0.05

0.00

0.05

−2 −1 0 1 2

Dose

Lo
ad

in
g

Third column of Λ

−0.05

0.00

0.05

0.10

−2 −1 0 1 2

Dos
e

Lo
ad

in
g

Fourth column of Λ

16 / 25



Significant features associated with first column of Λ
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I The number of group X-C on aromatic
ring

I Molecular regresson coefficients surface
LogP index

I Sum eigenvalue weighted by van der
Waals distance matrix

I Sum of topological distance between the
vertices O and Cl

I Number of Chlorine

In the training set, the chemicals having the largest expected value for η1 are Mercuric chloride, Benzyltriphenylphosphonium chloride, Sodium chlorite, 1,1-
Bis(3-cyclohexyl-4-hydroxyphenyl)cyclohexane, and Basic Blue 7. All but 1,1-Bis(3-cyclohexyl-4-hydroxyphenyl)cyclohexane, which is a known irritant, are known
toxins.

17 / 25



Chemical distance
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“Fill in” or “venture out”
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The three “farthest” chemicals in the hold-out set. From left to right: Iodoform, Triethyltin
bromide, and Indeno(1,2,3-cd)pyrene.
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Predictions for hold-out activating chemicals

● ●
●

●

−1

0

1

2

−2 −1 0 1 2

R
es

po
ns

e

Indeno(1,2,3−cd)pyrene

●

●

●

●

●

●

−1

0

1

2

−2 −1 0 1 2

R
es

po
ns

e

4−tert−Butylphenyl
salicylate

●

●

●

●

●

●●

●

−1

0

1

2

−2 −1 0 1 2

R
es

po
ns

e

Vernolate

0

1

2

3

−2 −1 0 1 2

Dose

D
en

si
ty

0

1

2

3

4

−2 −1 0 1 2

Dose

D
en

si
ty

0

2

4

6

−2 −1 0 1 2

Dose

D
en

si
ty

20 / 25



Predictions for hold-out non-activating chemicals
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What next (for this model)?

Future work includes:

I Using distance to inform mixture models

I Direct model specification of active/inactive

I Nonlinear dimension reduction

I Linking (combinations of) assays to human health outcomes

I Integrating information from multiple assays and multiple feature sets
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What next (for me)?
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Computing and CSGF

CSGF gave me the freedom to explore beyond just my advisor’s projects:

I First experience with Gaussian processes was a LANL practicum my first summer in grad
school

I Through work on this toxicology project, I met a wonderful collaborator who was
interested in GPs

I Developed a new fast GP algorithm

I Will be able to pull that in to expand this method to bigger applications
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Thanks and CSGF

Thanks at Duke are due to my advisor, Amy Herring, and the rest of my committee. I’m also
grateful to Matt Wheeler.

At LANL I am particularly grateful to Earl Lawrence, Dave Osthus, and Kary Myers. The
motivation to finish my PhD came from wanting to work with such amazing people!
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