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Catalysis and reactions at surfaces

• sustainability challenge:
fuels, chemicals, energy,
(in general: modern economy and

quality of life)
depend on supply of fossil resources

• alternative: 
convert readily available starting
molecules such as water, CO2, N2 into
valuable products
• these reactions rely on catalysts

(often heterogeneous catalysts)

Image: Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov. 
Science 2017 355 (6321)
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The value of theory/computation in catalysis

• Trial-and-error methods are costly:

• Thus theoretical insight can be useful 
Density Functional Theory (DFT), reaction rate theories, microkinetic modeling, scaling
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Jacobsen, Dahl, Clausen, Bahn, Logadottir, Nørskov, JACS 123, 8404 (2001) 

trial and error:
~thousands of experiments, 
~thousands of catalysts

2001: discovery aided by theory/computation

From: Mittasch, Frankenburg, Advances in Catalysis, Volume 2, 1950, Pages 81-104



Current challenges in modeling reactions at surfaces

• models of chemical reactions are becoming increasingly complex
• Electrolyte interfaces (structural complexity) – how to optimize electrolyte

3Tomita, Teruya, Koga, Hori.
J. Electrochem. Soc. 2000 147, 11, 4164-4167

Resasco, Chen, Clark, Tsai, Hahn, Jaramillo, Chan, Bell.  
J. Am. Chem. Soc., 2017, 139 (32), pp 11277–11287

Akira Tsuneto, Akihiko Kudo, Tadayoshi Sakata,
J Electroanalytical Chem,
367,1–2,1994,183-188,

ion effects solvent effects

A few (not exhaustive!) examples:



Current challenges in modeling reactions at surfaces

Standard practices in computational modeling (usually with DFT)
• Standard free energy approximations (harmonic oscillator, etc) may 

not work well for complex degrees of freedom 
(solvents, etc) – need more generalizable methods

• setting up atomic structures “by hand” for each system
and “hoping” they are the right structures (intuition) – not 
generalizable/systematic, not able to be scaled up very easily

also there is the ideal of “reproducibility”
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Global optimization: minima hopping algorithm

• problem: how to generalize finding relevant structures (for DFT calculations)
• The most physically relevant structures have low energies
à Global optimization

Global	optimization:	minima	hopping	algorithm
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Insights from global optimization results

• Solvation effects,
error estimates

• Ion effects:
• Electrostatic model
• Coverage dependence

6Ludwig et al, J. Phys. Chem. C 2019, 123, 5999−6009



Free energy: what is it?

• Describes the equilibrium / probability distributions

7

consider a system of interacting atoms.  At any instant 𝑡" , it is described by a “microstate” 𝑥" (e.g. the positions & velocities) 
the set of all possible microstates is the “phase space” Ω



Free energy: what is it?

• Describes the equilibrium / probability distributions

Example: chemical reaction 𝑁& → 2𝑁

𝑁& ≝ 𝑥" ∈ Ω 𝑑,,< 𝑟/ 2𝑁 ≝ 𝑥" ∈ Ω 𝑑,,> 𝑟&
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consider a system of interacting atoms.  At any instant 𝑡" , it is described by a “microstate” 𝑥" (e.g. the positions & velocities) 
the set of all possible microstates is the “phase space” Ω

𝑃 𝑁& = 𝑒4567/9:;

𝑃 2𝑁 = 𝑒4576/9:;

surface

N
N

surface
NN

𝑑,,

“states” like 𝑁& or 2𝑁 are basically subsets of Ω
the probabilities of those subsets are given by: à Free energy describes the probabilities

of physically meaningful states



Free energy: what is it?

• Describes the equilibrium / probability distributions

Example: chemical reaction 𝑁& → 2𝑁
𝑁& ≝ 𝑥" ∈ Ω 𝑑,,< 𝑟/
2𝑁 ≝ 𝑥" ∈ Ω 𝑑,,> 𝑟&

reaction equilibrium:
𝑃 2𝑁
𝑃 𝑁&

=
𝑒4576/9:;

𝑒4567/9:;
= 𝑒4<5=>?/9:;
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consider a set of interacting atoms.  At any instant 𝑡" , it is described by a “microstate” 𝑥" (e.g. the positions & velocities) 
the set of all possible microstates is the “phase space” Ω
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Free energy: what is it?

• Describes the equilibrium / probability distributions

Example: chemical reaction 𝑁& → 2𝑁
𝑁& ≝ 𝑥" ∈ Ω 𝑑,,< 𝑟/
2𝑁 ≝ 𝑥" ∈ Ω 𝑑,,> 𝑟&

reaction equilibrium:
𝑃 2𝑁
𝑃 𝑁&

=
𝑒4576/9:;

𝑒4567/9:;
= 𝑒4<5=>?/9:;

rate theory: 𝑇𝑆 ≝ 𝑥" ∈ Ω 𝑑,,≈ 𝑑;C

𝑅,7→&, ~ 𝑒
4<5F/9:;

under certain assumptions,
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consider a set of interacting atoms.  At any instant 𝑡" , it is described by a “microstate” 𝑥" (e.g. the positions & velocities) 
the set of all possible microstates is the “phase space” Ω
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“transition state”



Free energy

(free energy)

Absolute free energies

probability of a single 
microstate/
configuration.
~one evaluation DFT (potential energy)

number/density of
microstates

this integral is, in general, not really practically computable

11

~ total probability



Free energy

(free energy)

Absolute free energies

probability of a single 
microstate/
configuration.

number/density of
microstates

this integral is, in general, not really practically computable
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Harmonic approximation: 
if the forces are always linear in the displacements
for all relevant degrees of freedom

𝑆G"H = 𝑘JK
"

𝜖"
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9:; − 1

− ln 1 − 𝑒4
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9:;
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;

𝐶V,G"H 𝑑𝑇 = K
"

XY5
𝜖"

𝑒
MN
9:; − 1

�⃗� = −𝑘�⃗�
then the motion can be 
decomposed into 
“normal modes” 

there are analytical 
solutions for the
free energies of 
local potential energy minima

– this is the standard approximation
for DFT surface calculations
– anharmonic corrections can be

applied, but rely on intuition 



Free energy

(free energy)

“probability distribution”

Absolute free energies General methods (no harmonic approximation): 
relative free energies from atomic simulations

“thermodynamic integration”

probability of a single 
microstate/
configuration.

number/density of
microstates

this is, usually, not really practically computable
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other methods also exist
but this talk is based on the above



Enhanced sampling

• often simulations are “stuck” in free energy basins
• High energy barriers relative to 𝑘𝑇 or bottlenecks: “rare event”
• results of a simulation depend on the initial conditions, or converge extremely 

slowly
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𝑃 𝜉 ~ 𝑒45]/9;

𝑃H"^_`a 𝜉 ~ 𝑒4 5]b5cNFd /9;

physical distribution

biased distribution

probability distribution 
along any collective variable 𝜉 :



Enhanced sampling

• often simulations are “stuck” in free energy basins
• High energy barriers relative to 𝑘𝑇 or bottlenecks: “rare event”
• results of a simulation depend on the initial conditions, or converge extremely 

slowly
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𝑃 𝜉 ~ 𝑒45]/9;

𝑃H"^_`a 𝜉 ~ 𝑒4 5]b5cNFd /9;

physical distribution

biased distribution

probability distribution 
along any collective variable 𝜉 :

𝐹H"^_ = 𝑓 𝐹f seems optimal, 
but of course we don’t know 𝐹f - that is what we are trying to calculate



Here is an example:

starting in well A, a simulation
would ordinarily be stuck

metadynamics is used
to adaptively bias the simulation
so that all wells are sampled

(frequency-based method)

Adaptive enhanced sampling

• Adaptive biasing methods: update bias as they proceed, such that the bias 
converges toward an optimal bias / does not need to be known beforehand

https://doi.org/10.1002/wcms.31
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𝑃 𝜉 ~ 𝑒45]/9; 𝑃H"^_`a 𝜉 ~ 𝑒4 5]b5cNFd /9;

physical distribution biased distribution

https://doi.org/10.1002/wcms.31


State-of-the-art adaptive enhanced sampling

• Adaptive Biasing Force: ABF
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𝐹f 𝜉∗ = −
𝑑𝐴 𝜉∗

𝑑𝜉 − 𝐹f 𝜉∗ ∇𝜉apply external biasing force uniform sampling along 𝜉

efficient implementation: 
Darve et al, J. Chem. Phys. 128, 144120 (2008)



State-of-the-art adaptive enhanced sampling

• Adaptive Biasing Force: ABF

• Combined Force-Frequency: CFF
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𝐹f 𝜉∗ = −
𝑑𝐴 𝜉∗

𝑑𝜉 − 𝐹f 𝜉∗ ∇𝜉apply external biasing force uniform sampling along 𝜉

efficient implementation: 
Darve et al, J. Chem. Phys. 128, 144120 (2008)

E. Sevgen, A.Z. Guo, H. Sidky, J.K. Whitmer, J. J. de Pablo JCTC 16, 1448 (2020)



Applying enhanced sampling / free energy 
methods to a surface reaction
• N2/Ru(0001) – a “prototypical” highly-activated surface reaction
• Collective variables:

• r (N-N distance)
• h (surface-center of mass distance)

19



Enhanced sampling: N2/Ru(0001): results

• CFF displayed dramatically faster convergence than even an efficient 
ABF implementation
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(figure removed)



Enhanced sampling: N2/Ru(0001): results

• Combined ABF and CFF results à free energy surface
•àfull equilibrium probabilities, and the minimum free-energy path
• More general than TS search – this self-consistently find the free-energy path, 

rather than finding a potential-energy minimum path and adding a correction
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(figure removed)



Enhanced sampling: N2/Ru(0001): results

• Combined ABF and CFF results à free energy surface
• Comparison to harmonic TST shows

reasonable agreement
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(figure removed)



Enhanced sampling: N2/Ru(0001): results

• Combined ABF and CFF results à free energy surface
• Comparison to harmonic TST shows

reasonable agreement

• This is one of the first demonstrations
of a state-of-the-art enhanced
sampling method for a chemical 
reaction on a metal catalyst
• More general method à

more complex models
• Less reliance on “intuition”, less approximation
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(figure removed)



People

• Enhanced sampling:

• Global optimization/electrochemical catalysis:
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