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The Rise of Heterogeneous Computing

• Computing devices are becoming increasingly heterogeneous

– totally different kinds of processors being developed for different end uses

– individual processors and compute nodes that have a combination of very different hardware 
features and capabilities

• In the broad computing market …

– Servers: in data centers are using unconventional hardware in production: FPGAs 
(Microsoft), TPUs (Google), GPUs (multiple cloud providers)

– Mobile devices: Apple iPhone has 30 different special purpose compute accelerators on the 
device

– this trend observed by Herb Sutter, 2012: “Welcome to the [Compute] Jungle” – trend of 
increasing processor variety – and resulting challenge for software developers
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A World of Heterogeneous Computing (2)

• HPC market

– discrete GPU accelerators coupled with conventional CPUs are 
becoming common on large HPC systems

– June 2018: over half of the floating point computing capability on 
the TOP500 list is now supplied by GPUs

– computing system nodes are becoming more complex

– more features being added to processors, for example reduced 
precision hardware to support deep learning

• Why this is happening

– fundamental reason: year-over-year exponential growth in 
conventional CPU speeds is slowing

– processor performance is limited by power constraints

– scaling down semiconductor feature sizes is becoming more 
challenging

– in response, vendors are designing more complex, heterogeneous 
processors to continue to improve performance by other means
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Heterogeneous Computing: Implications

• Bad News: 🙁

– different kinds of compute hardware – difficult to program, challenging to maintain portable 
code to different hardware that performs well on all platforms

– longer term: our ability to continually increase the speed of scientific simulations faces an 
uncertain future

• Good News: 😀

– “A New Golden Age for Computer Architecture” – an exciting time for innovation

– Exciting opportunities for developing new algorithms that map well to new hardware, offering 
tremendous potential gains in performance for science applications
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The Origins of Heterogeneous Computing

• The “supercomputer market crash” of early 1990s gave rise 
to status quo of distributed MPI computing with commodity 
processors

• Early 2000s, LANL DarkHorse Project

– recognized a radical new approach was needed to get to exascale

– original ideas 1997-1998

– prescient: GPUs, FPGAs, 3-D stacked memory (HBM)

• LANL Advanced Architectures LDRD project, 2003-2005

– ported DOE science applications to GPUs and FPGAs

• LANL Roadrunner

– 2006 contract signed, 2008 broke Petascale barrier

– Challenging, ambitious effort

– was difficult to program (3 kinds of processing units)

– successful tenure through 2013 solving science problems of 
importance to DOE
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The rise of heterogeneous computing

• 2008 Exascale Computing Study (Kogge et al.) (DARPA, IPTO, AFRL)

– predicted that a 1 ExaFlops system would require 290-470 MW power (cost up to $1/2 B / 
year for a single system!!) (the actual number will be ~ 10X less, thanks in part to GPUs)

• April 2009 - ORNL and Cray started planning the Titan GPU-based system

– many early intense discussions of how to port applications to this system

– deployed for general use in 2013, will be decommissioned Aug. 1, 2019

– easier to program - CUDA, OpenACC (later OpenMP 4/5, Kokkos, RAJA, ...)

– has had a successful run delivering billions of core hours to its users

• 2019: now ALL next-generation leadership class systems announced in the 
DOE complex will be accelerated …

• … yet systems are still becoming even more heterogeneous (cf. Summit Volta 
Tensor Cores)
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Tensor Core Acceleration of Applications

• On-package reduced precision hardware units

• Developed to address exploding computational needs in 
deep learning, data analytics

• NVIDIA first announced @ NVIDIA GTC, May 11, 2017

• Half precision matrix multiplies 16X faster than 
double precision

• Other vendors also providing reduced precision processors – Google TPU; AMD Radeon 
GPUs; ~ 50 startups developing custom DL processors, reduced precision as low as 1-bit

• Represents a trend of growth in heterogeneity of processors and compute nodes

• On Summit the Tensor Cores already being used by applications – for example, at least 4 
out of 6 of the 2018 Gordon Bell Finalist teams used the Tensor Cores in some fashion

• This talk will describe one of these codes, the CoMet computational genomics application
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The CoMet comparative genomics application

A new biosciences application, CoMet = Combinatorial Metrics code

Used to identify genomic features within a population with applications to finding 
genetic causes of diseases

Not a “traditional” modeling and simulation code (e.g., continuum PDE solver, PIC, 
Monte Carlo, etc.)

Also is not a deep learning app per se, though is part of an AI workflow

Best described as a data analytics application used in comparative genomics 
studies
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CoMet: Solving a “Needle in a Haystack” Problem

• Is used to find genetic causes of individual traits such as 
susceptibility to a disease

• These traits can be caused by a complex interaction of 
genetic features

• However it is unknown beforehand which of the millions of 
genetic features are interacting to cause these traits

• It is a huge combinatorial problem to search across all these 
combinations of features to find the important ones

• To solve this we use vector similarity search, to find all clusters of vectors (representing 
the genetic features) that are similar to each other

• The computational complexity of these methods is exponential in the cluster size – O(nkm)
complexity for m vectors of length n clustered into groups of k vectors

• An extremely expensive computation and is also highly network intensive because of the 
all-to-all comparison, all compute nodes must exchange data with all other compute nodes
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Solving the Vector Similarity Problem

• Vector similarity search is very similar to another known problem

• Has an identical computational pattern to the dense matrix multiply operation, 
“GEMM” general dense matrix-matrix product

• GEMMs can already be computed efficiently by existing high performance
software libraries (e.g., NVIDIA CUBLAS, Intel MKL)

• These libraries schedule the GEMM computations to make best use of the 
memory hierarchy (registers, caches) on the processor

• These libraries can thus be adapted to perform the required vector similarity 
calculations
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Vector Similarity Methods in CoMet

1. Proportional Similarity (PS) Metric:

– very much like a GEMM but replaces the floating point multiply with a “minimum of scalars” operation

– this “minimum of scalars” is implemented in hardware on many modern processors

2. Custom Correlation Coefficient (CCC):

– this method operates on binary allele data – it counts the occurrences of joint relationships between 
genetic features

– its computation can exploit the “population count” hardware instruction present on many modern 
processors
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The CCC Method: Implementing on GPUs

Performs calculations on allele data stored as 2-bit entries stored into vectors

The original method on GPUs uses bitwise operations on 64-bit ints

The 2-bit input values are packed into 64-bit words and operated on with binary 
AND, OR, NOT operations

CUDA intrinsic __popcll hardware population count is used for high speed

Implemented with modified MAGMA library to take advantage of MAGMA’s highly 
optimized GEMM operations
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CCC Method on GPUs Using Tensor Cores

• New Tensor Core method uses a mathematical “trick” to convert CCC 
calculation into a standard GEMM matrix multiply to count the values

• This can be done in half precision with no loss of accuracy

• We use the Tensor Cores – originally designed for deep learning 
applications but we have adapted to this use

• Each vector is replaced by two vectors, each containing the number 
of 0s and 1s of each element of the original vector, forming a new 
matrix of vectors V

• Then taking the dense matrix-matrix product VT V generates all 2X2 
tables for all vector pairs

• FP16 is used to hold the 2-bit inputs; the result is accumulated as 
FP32

• Uses CUDA function cublasGemmEx
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CoMet Results on Summit: Weak Scaling

• Scale-out performance 
test on up to 99% of 
Summit nodes

• Fixed work per node, 
measuring wallclock time 
to solution

• All methods show 
near-perfect scale-out

• Very communication-
intensive algorithm 
exploits Summit’s low-
congestion Mellanox 
Infiniband fat tree 
network with adaptive 
routing
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Performance on the Full Summit System

• CCC/sp/Tensor Cores: 2.36 ExaOps

• First reported ExaOp calculation by an 
application, June 8, 2018

• This is 75% of Summit’s peak achievable 
performance of ~ 3.2 ExaOps

• Use of Tensor Cores improves performance 
by 4.13X compared to original bitwise 
method

• We are already achieving Exascale-class 
performance on the pre-exascale Summit 
system

• True double precision Exascale performance 
will come with the Frontier system and other 
exascale systems in the 2021-22 timeframe
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Comparison to State of the Art Implementations
Comparison with other efforts 
reported in the literature to adapt 
these methods to GPUs and to 
parallel systems

Fastest known 2-way method 
(cluster size k = 2) was run on 512 
nodes of Edison.  CoMet exceeds 
this rate by 21,285X

Fastest known 3-way method was 
run on 4 GTX/Titan GPUs.  CoMet 
exceeds this rate by 306,910X

CoMet runs 4 - 5 orders of 
magnitude faster than best 
current state of the art

Made possible by first-time use of 
a many-GPU system to solve 
problems of this type
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Performance on a Real-World Problem

• Data from publicly available human genome 
dataset, 81M vectors of length 600K

• 2-way CCC/sp/tc method is run @ 2/3 of 
Summit (3,000 nodes)

• Inputs are read from AlpineTDS GPFS parallel 
filesystem

• Output are written to on-node NVMe burst 
buffers

• The core computation consumes 89% of runtime; I/O and other overheads only 11%

• Core computation runs at 1.50 ExaOps on 2/3 of Summit, consistent with 2.36 ExaOps 
rate at 99% of Summit

• Total job runtime is 3.3 hours on Summit -- if run at the rate of best comparable state 
of the art, would require 15 years wallclock runtime to complete
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Growing Interest in Mixed Precision

• Multiple Gordon Bell entries 2018, 2019 
used mixed precision

• SC18 ~ 15 presentations, posters, 
sessions on mixed precision methods: 
dense linear algebra iterative refinement, 
FFTs, multigrid solvers, finite element 
simulations, Newton methods, tools

• UTK Innovative Computing Laboratory 
using mixed precision to accelerate dense 
linear algebra

• ORNL mixed precision working group, 
exploring other opportunities, discussions 
with NVIDIA

Graphic courtesy Stan Tomov, ICL
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The Future of Heterogeneous Computing

• We are not at the end, but at the beginning of a period of increasingly 
heterogeneous compute nodes – GPUs, reduced precision units are just first 
steps

• Predictions:

– David Patterson @SCALE 2018 keynote: the future is Domain Specific Architectures, 
customized to specific problem domains

– Jack Dongarra, ISC19: ”By 2030, there will be no more general purpose computing”

– ASCR Workshop on Extreme Heterogeneity, 2018 – a future of increasingly diverse 
accelerators, eventuating possibly in neuromorphic or quantum accelerators

– IEEE International Roadmap: Beyond CMOS: analog computing, probabilistic 
circuits, reversible computing

– Bill Dally: NVIDIA experimenting with analog computing
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Sidebar: The Need to Accelerate Scientific Codes

• Scientist’s dream: “I just want to write my code to express my science, I want it to 
run fast, I don’t want to worry about hardware.”

• Many attempts and claims have been made for programming languages and 
tools to solve this problem. No silver bullet has emerged, though some things 
help (directives, abstraction layers, domain-specific languages).

• Understandable to wish we would never need to port codes to GPUs (20 years 
ago similar concerns about MPI)

• Not all codes need to be GPU-accelerated (or even parallel)

• On the other hand, at the high end, some science applications that have not or 
cannot use GPUs have been abandoned for use in leadership computing – e.g., 
computational chemistry code previously used at OLCF, doesn’t use GPUs, no 
longer used, replaced by QMCPACK
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Critical Role of New (Parallel) Algorithms

• Real revolutions in computing have come from breakthroughs in algorithm 
complexity, e.g. FFT O(n2) → O(n log(n)), Multigrid O(n3/2), O(n4/3) → O(n)

• May be even more important than faster hardware (e.g., MIP solvers over 25 
years: 500,000X speedup from hardware, 1,500,000X speedup from 
software/heuristics/algorithms)

• Finding new ways to map difficult algorithms to parallel or accelerated hardware 
has led to breakthrough results, sometimes changing the effective computational 
complexity achievable on parallel systems

– Ray tracing algorithms mapped to GPUs

– Event-based methods to map Monte Carlo radiation transport to GPUs

– Aggressive coarsening methods to map 3-D algebraic multigrid solvers to parallel systems

– High order tensor elements to improve computational intensity (ECP CEED codesign center)

– Communication-avoiding Krylov solver methods for bandwidth, latency sensitive problems

– Reduced precision dense and sparse linear solvers

– KBA methods to map wavefront algorithms to parallel and accelerated hardware 
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Example Challenge Problems:

1. How can you accelerate your science algorithm on a processor that doesn’t have 
or a floating point unit (or an instruction set) (neuromorphic processor) (has been 
done for simple diffusion solvers, others – with huge decrease in power 
consumption)

2. What if a specific linear algebra operation could be done in O(n) time instead of 
O(n2) time on an accelerator, could your science application exploit it (quantum 
processor)

3. What if you could multiply pairs of dense matrices 100X faster by representing the 
inputs as 1-bit values – could you use this feature (available now on NVIDIA 
Turing architecture)

4. If you had a very fast analog computing circuit that could give you an initial 
approximate guess at a solution, could this help you solve your science problem 
faster

5. (Reverse question: can we abstract computational kernels useful to multiple 
applications, present this as a “wish list” for custom hardware to vendors?)
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Conclusions

• In HPC we are entering a (difficult, challenging / exciting, fun) time for developing new 
computational methods and software

• New kinds of compute hardware will continue to emerge in the coming years – some 
totally unexpected (Tensor Cores, TPUs were totally unforeseen 10 years ago)

• Some applications will not survive these changes, some will adapt, some apps will be 
rewritten, some brand new applications will be developed and thrive

• CoMet is an example of an app making a huge speedup over state of the art by 
exploiting new hardware capabilities

• Code performance portability, maintenance will be a real challenge in this environment

• As computational scientists and algorithm developers, we need to understand current 
approaches and prior art and also be ready to take a blank-sheet-of-paper fresh look at 
how to solve the science problems that we care about

• Diverse skills and approaches to problem solving will continue to be important for our 
science teams in this environment 
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