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The size of neural datasets is growing 
exponentially

(Stevenson, 2019)



A simultaneous recording 
of ~3,000 neurons

(Stringer et al, 2019)



These datasets 
contain structure over 
multiple time scales



Key challenge: Understanding circuit 
function across multiple timescales.
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dimensions ~ (1000 x 1000 x 1000)

We propose to represent data as a three-
dimensional array (i.e., a third-order tensor)



Estimating firing rates on single trials 
is challenging

Amarasingham et al. (2015)
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Key idea: single-trial dynamics don’t vary 
arbitrarily, but exhibit systematic variability.
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Both ideas can be formulated as statistical 
models and related to existing literature
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Tensor decomposition can be viewed 
as a simple generalization of PCA

PCA / matrix decomposition
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Williams et al. (2018). Neuron, 98(6): 1099-1115
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Williams et al. (2018). Neuron, 98(6): 1099-1115
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Both ideas can be formulated as statistical 
models and related to existing literature
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Are we missing key features in our 
data by looking at raw data?
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Temporal variability obscures structure 
in spike train data
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Time warping discovers oscillations in 
two different animal models

• Not aligned to motor actions 
• Aligned to LFP 
• In-phase across all multi-units

• Not aligned to motor actions 
• Not aligned to LFP 
• Not in-phase across units 
• Related to whisking??? 
• Many un-answered questions.
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