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Target validation
• Perturbation ‘omics analysis (e.g. CRISPR)

• In vitro / in vivo expression analysis

Target identification
• Genetic disease association (GWAS)

• Disease vs healthy gene expression

• Pathway/network analysis

Pre-clinical development
• Biomarker prediction

• Animal model data analysis

• Patient stratification

Post-market 
research
• Drug repurposing

• Combination therapy

Clinical trials
• Patient stratification

• Medical image analysis

Lead optimization &
Candidate selection
• Mechanism of action

• Pharmacodynamics

Compound screening
• Tractability prediction

• Assay development/analysis

• Rational design

Images adapted from: www.researchamerica.org; Owens, B. (2012) Nature
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‘Omics data:
• Genome (DNA-seq)
• Transcriptome (RNA-seq; 

aka “gene expression”)
• Proteome (mass spec)
• Metabolome, interactome, ...
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Image adapted from: Owens, B. (2012) Nature

Reverse Transcription:

~50% capture efficiency

Several other steps:

80-90% efficiency each

Overall: 10-20%

RNA molecules
(~100-300k/cell)

RNA

RNA

RNA



Single cell application: mechanisms of therapy-resistant cancer

Image: Valdes-More et al. (2018) Frontiers in Immunology
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Single cell application: mechanisms of therapy-resistant cancer

Image: Valdes-More et al. (2018) Frontiers in Immunology
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Single cell application: mechanisms of therapy-resistant cancer

Image: Valdes-More et al. (2018) Frontiers in Immunology

CDK4/6 inhibitors as potential combination therapy to improve response 

Jerby-Arnon et al. (2018) Cell



Single cell application: Disease-specific cell types in Alzheimer’s

Keren-Shaul et al. (2017) Cell
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Single cell application: Disease-specific cell types in Alzheimer’s

Keren-Shaul et al. (2017) Cell

Regular 
microglia

Disease-specific microglia
Activated; digest 

aggregates, plaques

Negative 
feedback 

(checkpoints)



Scaling up single cell analysis

Images: Angerer et al. (2017) Curr Op in Sys Biol; Broad Inst; darwinian-medicine.com
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Scaling up single cell analysis

Goal: create a map of all cells in the human body
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Scaling up single cell analysis

Goal: create a map of all cells in the human body

Images: Angerer et al. (2017) Curr Op in Sys Biol; Broad Inst; darwinian-medicine.com

1.3 million neurons 
from mouse brain

Human microbiome
100 trillion microbes/person

Several trillion cells; hundreds of cell types



Scaling up single cell analysis

Wolf et al. (2018) Genome Biology

HDF5 files for large ‘omics data



n > p
n = observations (cells, 100k-1mil+)

p = features (genes, 20k)



https://towardsdatascience.com/deep-learning-for-single-cell-biology-935d45064438; Lin et al. (2017) Nucleic Acids Research; Shaham et al. (2017) Bioinformatics 

Autoencoder (AE) for non-linear 
dimensionality reduction

PCA AE

Big data has advantages! Neural networks for cell type identification

Residual neural networks for batch effect correction



The missing data problem

Genes

C
e

lls

Truth

Observed
Undercounting & “dropout”

Color = # molecules

van Dijk et al. (2018) Cell

Reverse Transcription:

~50% capture efficiency

Several other steps:

80-90% efficiency each

Overall: 10-20%

RNA molecules
(~100-300k/cell) Dropout



The missing data problem

1. Model missing information

2. Imputation

van Dijk et al. (2018) Cell; Arisdakessian et al. (2018) bioRxiv



Missing data makes cell subtype identification difficult

Lambrechts et al. (2018) Nat Medicine; Russ et al. (2013) Frontiers in Genetics

Coarse-grained types separate well...
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Missing data makes cell subtype identification difficult

Lambrechts et al. (2018) Nat Medicine; Russ et al. (2013) Frontiers in Genetics

Coarse-grained types separate well...
...But finer subdivisions can be murky
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Hirahara (2016) Int Immunol; Lloyd and Hessel (2010) Nat Rev Immunol 



Hirahara (2016) Int Immunol; Lloyd and Hessel (2010) Nat Rev Immunol 

T cell subtypes in Asthma



Example: CD4+ T cells from lung

Russ et al. (2013) Frontiers in Genetics

Lung biopsy Blood

CD4+
T cells

CD8+
T cells

CD45+
T cells

Healthy Asthma

T regulatory cells (“Tregs”)
Immune-suppressive functions
 Difference in Treg abundance between healthy and asthma?
 Difference in Treg gene expression between healthy and asthma?



Example: CD4+ T cells from lung
Cells belonging to each donor

tsne1

ts
n

e2

Result: can’t confidently identify sub-types of CD4 T cells

Two problems:

1. Marker only detected in a few cells (likely due to dropouts)

2. Clustering is driven by donor (likely due to batch effects)

Treg marker expression
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Simple approach to improve cell type identification

1. Aggregated info gives a clearer picture

• Individual gene expression is noisy & prone 
to dropout

• Combining signal from multiple genes can be 
more reliable

2. Biologically relevant genes are better for 
clustering

• Variation less dominated by technical/batch 
effects

Two concepts that help:

Summed expr of 21 
Treg-related genes

Treg
markers



Simple approach to improve cell type identification

A better feature space for cell type 
identification

1. Define a set of axes to measure similarity of 
each cell to various cell types or functional 
states 

2. Place cells into the space according to their 
scores for each axis & identify clusters

Axis 1: “Treg-ness” = FOXP3 + CTLA4 + IL10 + ...

Axis 4: “Exhaustion” = PDCD1 + CD244 + CD160 + ...

Axis 3: “G2/M Phase” = CDK1 + CCNA2 + CCB1 +  ...

Axis 2: “Th1-ness” = TBX21 + CXCR3 + CCR5 + ...

...

Th1-ness

Treg-ness

Exhaustion

“Marker space”



Improved cell type identification

Clusters not driven by patient!

Before

After

tSNE of marker space
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Improved cell type identification
Th1-nessTreg-nessTh17 / Th22-ness

Terminal differentiationAnti-inflammatoryType II Interferon Response

Now we can compare treatment groups to identify:
• Changes in cell type composition
• Changes gene expression within a cell type

Before

After

tSNE of marker space

tsne1
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n
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Future directions

Cell type,
functional state

Image: Broad Inst

https://www.broadinstitute.org/research-highlights-human-cell-atlas

