A RAYLEIGH QUOTIENT FIXED POINT METHOD FOR ALPHA-EIGENVALUE PROBLEMS

M. I. Ortega¹ Advisor: R. N. Slaybaugh¹

¹Department of Nuclear Engineering University of California, Berkeley

DOE CSGF 2019 Program Review, July 15, 2019

Outline

Motivation

Background

Research Objectives

Deriving a New Method

Results

Conclusion

Introduction

- Modern nuclear reactor designs and experiments require both robust and simple numerical methods for modeling.
- What works well for some problems might not work at all for other problems (no silver bullet).
- While the physics of the problem might give us hints on how to solve a problem, the mathematics also gives us clues (structure).

Motivation: The Alpha-Eigenvalue Problem

- Applications of the alpha-eigenvalue have increased substantially in the past decade.
- Research into accelerator-driven subcritical reactors and pulsed neutron experiments has led to renewed interest in the alpha-eigenvalue problem of neutron transport as it helps to predict reactor kinetic parameters and the time necessary to establish the asymptotic neutron flux distribution.
- Subcritical assembly experiments used in non-proliferation research and cross section evaluation can be evaluated using the alpha-eigenvalue as it exists even for systems without fissile material.

The Alpha-Eigenvalue Problem

$$\begin{split} \left[\frac{\alpha}{v(E)} + \hat{\Omega} \cdot \nabla + \sigma(\vec{r}, E) \right] \psi(\vec{r}, E, \hat{\Omega}) = \\ \frac{\chi(E)}{4\pi} \int_{4\pi} d\hat{\Omega}' \int_0^\infty dE' \, \nu(E) \sigma_f(\vec{r}, E') \psi(\vec{r}, E', \hat{\Omega}') \\ + \int_{4\pi} d\hat{\Omega}' \int_0^\infty dE' \, \sigma_s(\vec{r}, E' \to E, \hat{\Omega}' \to \hat{\Omega}) \psi(\vec{r}, E', \hat{\Omega}') \end{split}$$

The sign of the algebraically largest eigenvalue determines the criticality of a system:

$$\alpha_0 \begin{cases} > 0, & \text{supercritical,} \\ = 0, & \text{critical,} \\ < 0, & \text{subcritical.} \end{cases}$$

Eigenvalues ordered by their real parts with α₀ being the algebraically dominant eigenvalue

$$\alpha_0 > \operatorname{Re} \, \alpha_1 \ge \operatorname{Re} \, \alpha_2 \ge \cdots \ge \operatorname{Re} \, \alpha_m.$$

Background

Objectives of this Work

Consider the discretized eigenvalue transport equation

$$\left[\mathbf{H} + \alpha \mathbf{V}^{-1}\right] \boldsymbol{\Psi} = \left[\boldsymbol{\Sigma}_{\mathbf{s}}^* + \boldsymbol{\Sigma}_{\mathbf{f}}^*\right] \boldsymbol{\Psi}$$
(1)

Derive a fixed point method capable of solving subcritical/critical/supercritical alpha-eigenvalue problems for Cartesian geometry. diamond differencing in space, multigroup in energy, isotropic scattering, and discrete ordinates in angle approximation transport problem (these restrictions are relaxed).

The Discretized Eigenvalue Equations

Consider the following fixed point formulation:

$$\Psi = \mathbf{H}^{-1} \big[-\alpha \mathbf{V}^{-1} + \boldsymbol{\Sigma}_{\mathbf{s}}^* + \boldsymbol{\Sigma}_{\mathbf{f}}^* \big] \Psi \equiv \mathbf{A}(\alpha) \Psi \qquad (2)$$

- Why this form? Only requires inversion of H (A transport sweep).
- The matrix A(α) is primitive. We can assure it has a positive eigenvector.
- This positive eigenvector solves the discretized multigroup criticality eigenvalue equations when we also have the dominant eigenvalue.

Primitive Matrices [?]

Definition

Let $\mathbf{B} \ge \mathbf{0}$ be an irreducible $n \times n$ matrix, if there is some m > 0such that $\mathbf{B}^m > 0$, then \mathbf{B} is *primitive*.

Theorem

The Perron-Froebenius Theorem for Primitive Matrices Let $\mathbf{B} \ge \mathbf{0}$ be a primitive $n \times n$ matrix. Then,

- 1. B has a positive real eigenvalue, λ_1 , equal to its spectral radius, and which is greater than (in absolute value) all other eigenvalues.
- 2. For $\rho(\mathbf{B})$ there is a corresponding eigenvector x > 0.
- 3. $\rho(\mathbf{B})$ is a simple eigenvalue of \mathbf{B} .

Primitivity of the Matrix $\mathbf{A}(\alpha)$

What Has Been Done Before?-Critical Search

$$\left(\mathbf{H} + \alpha^{\ell} \mathbf{V}^{-1}\right) \boldsymbol{\Psi}^{\ell} = \left(\boldsymbol{\Sigma}_{\mathbf{s}}^{*} + \frac{1}{k^{\ell}} \boldsymbol{\Sigma}_{\mathbf{f}}^{*}\right) \boldsymbol{\Psi}^{\ell}$$
(3)

Algorithm 1 Critical Search Method [?]

- 1: Make an initial guess for α^0 .
- 2: Solve Eq. 3 for k^0 .
- 3: Obtain a second guess α^1 by adjusting α^0 by some eigenvalue modifier value: $\alpha^1 = \alpha^0 + \text{EMV}$.
- 4: Solve Eq. 3 for k^1 .
- 5: Using $(\alpha^{\ell}, k^{\ell})$ and $(\alpha^{\ell-1}, k^{\ell-1})$, perform a linear extrapolation of $k(\alpha)$ to find $\alpha^{\ell+1}$ such that $k^{\ell+1}(\alpha^{\ell+1}) = 1$.
- 6: Solve Eq. 3 for $k^{\ell+1}$.
- 7: Repeat until $k^{\ell+1} = 1$.

What Has Been Done Before?-Critical Search

- This method struggles for subcritical problems as the negative eigenvalue introduces negative absorption which can cause instability in the transport sweep [?].
- The method requires an eigenvalue modifier that is usually selected by the user. Bad modifiers might slow down convergence or prevent it entirely.
- Method incredibly slow for problems close to critical. Requires many k-eigenvalue calculations.
- Requires fissile material in system (non-multiplying problems are not possible).

Critical Search Convergence

Figure 1. Critical Search Convergence Behavior

A Fixed Point Method

$$\Psi = \mathbf{H}^{-1} \bigg[-\alpha \mathbf{V}^{-1} + \boldsymbol{\Sigma}_{\mathbf{s}}^* + \boldsymbol{\Sigma}_{\mathbf{f}}^* \bigg] \Psi \equiv \mathbf{A}(\alpha) \Psi$$

- Given the limitations of the previous algorithm, we instead derive a fixed point method.
- For the fixed point equation above, we see that the fixed point to these equations is the positive eigenvector we are looking for.
- Given an approximate eigenvector, we need to derive an update for the eigenvalue.

Deriving the Eigenvalue Updates

• If $(\mathbf{\Psi}, \lambda)$ are an eigenpair, then

$$\|\mathbf{A}(\alpha_*)\mathbf{\Psi} - \lambda\mathbf{\Psi}\|_2^2 = 0.$$

Suppose instead we have some approximate eigenvector, Ψ_i. We find the corresponding best approximate eigenvalue λ_i by minimizing the residual in the least squares sense with respect to some parameter μ,

$$\lambda_i = \operatorname*{arg\,min}_{\mu} \|\mathbf{A}(\alpha_i)\boldsymbol{\Psi} - \mu\boldsymbol{\Psi}\|_2. \tag{4}$$

The previous equation is minimized when µ equals the Rayleigh quotient [?].

Deriving the Eigenvalue Updates-Continued

The positive eigenvector corresponds to eigenvalue equal to one. We set the Rayleigh quotient equal to one and solve for the α_i:

$$1 = \frac{\boldsymbol{\Psi}_{i}^{T} \mathbf{A}(\alpha_{i}) \boldsymbol{\Psi}_{i}}{\boldsymbol{\Psi}_{i}^{T} \boldsymbol{\Psi}_{i}} = \frac{-\alpha_{i} \boldsymbol{\Psi}_{i}^{T} \mathbf{H}^{-1} \mathbf{V}^{-1} \boldsymbol{\Psi}_{i} + \boldsymbol{\Psi}_{i}^{T} \mathbf{H}^{-1} (\boldsymbol{\Sigma}_{s}^{*} + \boldsymbol{\Sigma}_{f}^{*}) \boldsymbol{\Psi}_{i}}{\boldsymbol{\Psi}_{i}^{T} \boldsymbol{\Psi}_{i}} \rightarrow \alpha_{i} = \frac{\boldsymbol{\Psi}_{i}^{T} \mathbf{H}^{-1} (\boldsymbol{\Sigma}_{s}^{*} + \boldsymbol{\Sigma}_{f}^{*}) \boldsymbol{\Psi}_{i} - \boldsymbol{\Psi}_{i}^{T} \boldsymbol{\Psi}_{i}}{\boldsymbol{\Psi}_{i}^{T} \mathbf{H}^{-1} \mathbf{V}^{-1} \boldsymbol{\Psi}_{i}}.$$

The Rayleigh Quotient Fixed Point Method I

Algorithm 2 One-Sweep Rayleigh Quotient Fixed Point Method

while residual > tolerance do if i = 0 then

$$\alpha_{(i)} = \frac{\Psi_{(i)}^{T} \left(\boldsymbol{\Sigma}_{\mathbf{s}}^{*} + \boldsymbol{\Sigma}_{\mathbf{f}}^{*} \right) \Psi_{(i)}}{\Psi_{(i)}^{T} \mathbf{V}_{\mathbf{z}}^{-1} \Psi_{(i)}}.$$
$$\mathbf{q}_{(i)} = \left(-\alpha_{(i)} \mathbf{V}_{\mathbf{z}}^{-1} + \boldsymbol{\Sigma}_{\mathbf{s}}^{*} + \boldsymbol{\Sigma}_{\mathbf{f}}^{*} \right) \Psi_{(i)}$$
$$\Psi_{(i+1)} = \mathbf{H}_{\mathbf{z}}^{-1} \mathbf{q}_{(i)}$$

else

Deriving a New Method

The Rayleigh Quotient Fixed Point Method II

$$\alpha_{(i)} = \frac{\Psi_{(i)}^T \left(\boldsymbol{\Sigma}_{\mathbf{s}}^* + \boldsymbol{\Sigma}_{\mathbf{f}}^* \right) \Psi_{(i)} - \Psi_{(i)}^T \mathbf{q}_{(i-1)}}{\Psi_{(i)}^T \mathbf{V}_{\mathbf{z}}^{-1} \Psi_{(i)}}.$$
$$\mathbf{q}_{(i)} = \left(-\alpha_{(i)} \mathbf{V}_{\mathbf{z}}^{-1} + \boldsymbol{\Sigma}_{\mathbf{s}}^* + \boldsymbol{\Sigma}_{\mathbf{f}}^* \right) \Psi_{(i)}$$
$$\Psi_{(i+1)} = \mathbf{H}_{\mathbf{z}}^{-1} \mathbf{q}_{(i)}$$

end if

$$\mathsf{residual} = \frac{\left\| \boldsymbol{\Psi}_{(i+1)} - \boldsymbol{\Psi}_{(i)} \right\|_2}{\left\| \boldsymbol{\Psi}_{(i+1)} \right\|_2}$$

end while

1D Criticality Benchmark Problems

		Problem Properties				
		i toblem i toperties				
	Problem	1D	1D	Infinite	Reflected	Reference
	ID	Slab	Spherical	Medium	BC	k_{eff}
	PUa-1-0-IN			1		2.612903
	PUa-1-0-SL	1				1.00
	PUb-1-0-IN			1		2.290323
	PUa-H2O(1)-1-0-SL	1			1	1.00
	PUa-H2O(0.5)-1-0-SL	1			✓	1.00
	PUb-1-0-SL	1				1.00
	PUb-1-0-SP		1			1.00
	Ua-1-0-SL	1				1.00
	Ua-1-0-IN			1		2.25
	Ub-1-0-IN			1		2.330917
	Uc-1-0-IN			1		2.256083
	Ud-1-0-IN			1		2.232667

Table 1. Criticality Benchmark Problem List and Properties

Benchmark problems from the Analytical Benchmark Test Set for Criticality Code Verification [?].

Alpha-Eigenvalue Sweep Comparison

Table 2. Alpha-Eigenvalue Sweep Comparisons

(a) Infinite Medium Sweeps

(b) Critical System Sweeps

	Sweeps			Sweeps	
Problem ID	Rayleigh Quotient	Critical Search Method	Problem ID	Rayleigh Quotient	Critical Search Method
Plutonium (a)	33	432	Plutonium(a) Slab	26	64
Plutonium(b)	21	391	Plutonium(a)/Water Slab	37	*
Uranium(a)	24	472	Plutonium(b)/Water Slab	23	*
Uranium(b)	24	464	Plutonium(b) Slab	24	*
Uranium(c)	24	474	Plutonium(b) Sphere	37	105
Uranium(d)	24	472	Uranium(a) Slab	27	*

* Did Not Converge

• Critical search requires multiple k-effective calculations.

Rayleigh quotient method performed better than the critical search method for subcritical, critical, and supercritical systems.

Alpha-Eigenvalue L₂ Convergence for Select Problems

Figure 2. Eigenvalue Relative Change/Residual as a Function of Sweeps for α -Eigenvalue Problems

2D MOX Fuel Assembly-Transport Sweep Comparison

Figure 3. NEA MOX Fuel Benchmark

Table 3. Transport Sweeps forConvergence

Results 2D MOX Fuel Assembly-Scalar Fluxes

Figure 4. Scalar Flux ϕ_g , g = 4

Figure 5. Scalar Flux ϕ_g , g = 6

2D MOX Fuel Assembly-Scalar Fluxes

Figure 6. Relative Error Comparison

Failures-81 Group Infinite Medium Analytical Alpha-Eigenvalue Problem (Betzler)

$$\frac{\alpha_n}{v} = -(\sigma_g - \sigma_f) + \sigma_{sg,g+1} \left[\bar{\nu}^{G-1} \exp\left(\frac{2\pi i n}{G}\right) - 1 \right], \text{ for } n = 0, \dots, G-1.$$

- The Rayleigh Quotient method fails for certain test problems.
- Sometimes occurs when the irreducibility/primitivity condition is not met.
- **Table 4.** Infinite Medium 81-GroupProblem Cross Sections (cm^{-1})

g	σ	σ_f	$\sigma_{sg,g+1}$	χ	$v_g [{\rm cm/s}]$
1	101.0	0.0	100.0	1.0	1.0
2-80	101.0	0.0	100.0	0.0	1.0
81	101.0	100.0	0.0	0.0	1.0

Conclusion

- We have developed an alpha-eigenvalue Rayleigh quotient fixed point method that is able to obtain the eigenpair for subcritical/critical/supercritical systems.
- We showed that the discretized transport eigenvalue problems form a primitive system of linear equations.
- Using primitivity, we are able to guarantee the existence of a simple, dominant eigenvalue with a corresponding unique, positive eigenvector.

Acknowledgments/Funding

- Special thanks to Peter N. Brown, Britton Chang, Teresa Bailey, and the rest of the ARDRA team at LLNL.
- This research is supported by the Department of Energy Computational Science Graduate Fellowship, provided under grant number DE-FG02-97ER25308. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Thank you! Questions?