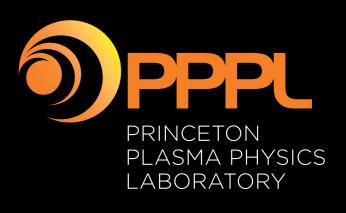
Electromagnetic gyrokinetic turbulence simulations in the tokamak edge with discontinuous Galerkin methods

Noah Mandell DOE CSGF Program Review — July 2019



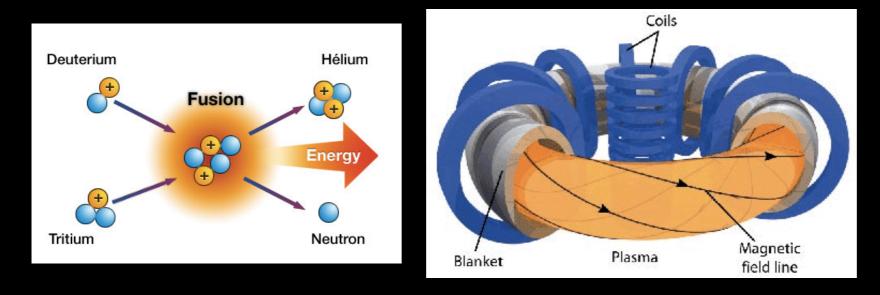
How can we save the world?

OPPPL

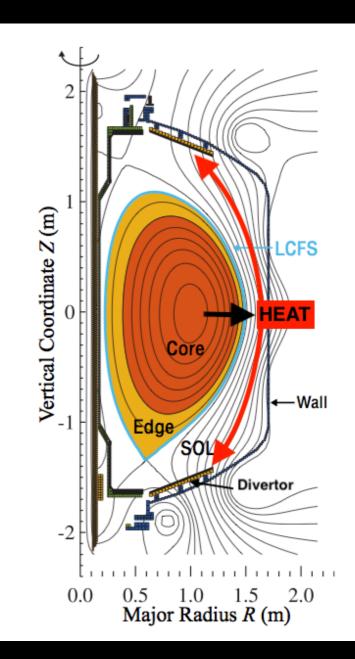
How can we make fusion energy?



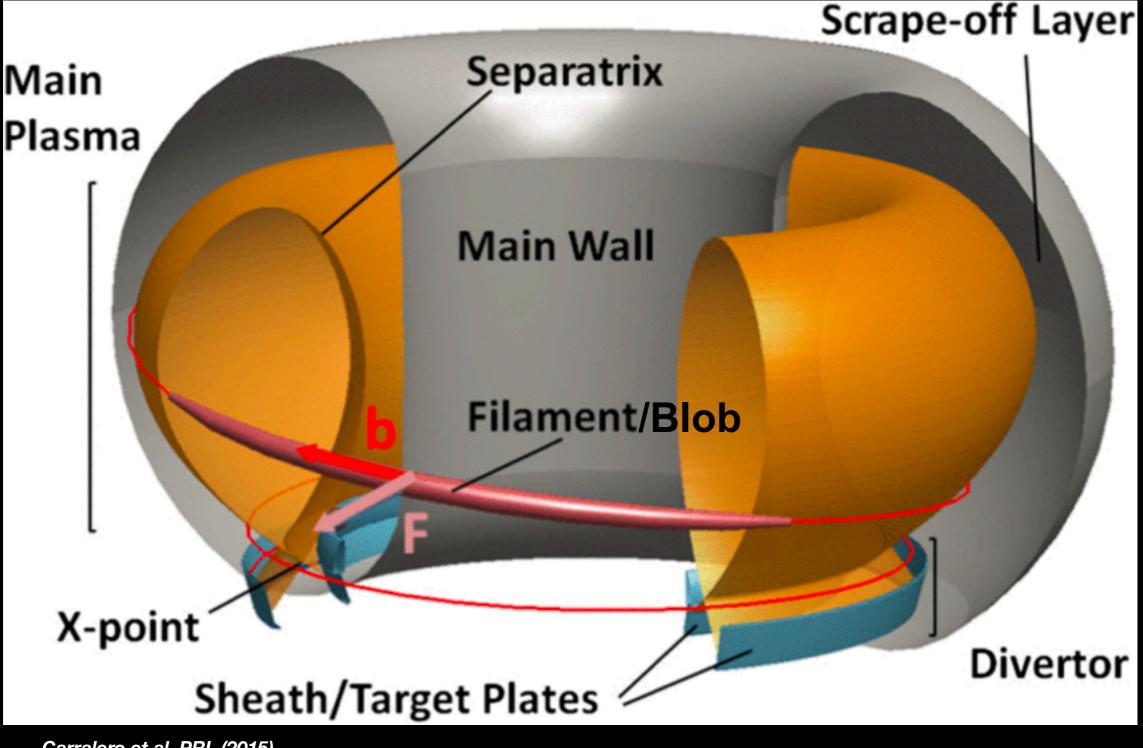
How can we make fusion energy?



- Confine plasma with magnetic fields in a donutshaped reactor called a <u>tokamak</u> and heat it to > 100 million °C
- <u>Turbulence</u> is a main source of inefficiency (in core)
- Plasma properties in the <u>edge/SOL</u> constrain performance and component lifetime
 - Heat exhausted in SOL could damage divertor plates
 - Sets boundary condition on core profiles (e.g. H mode)

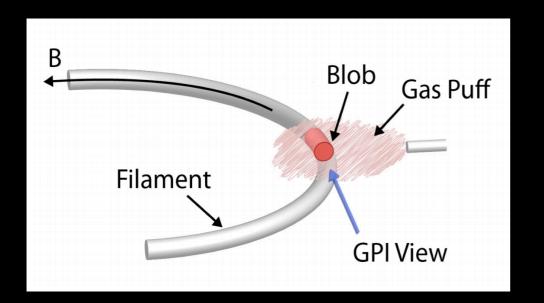


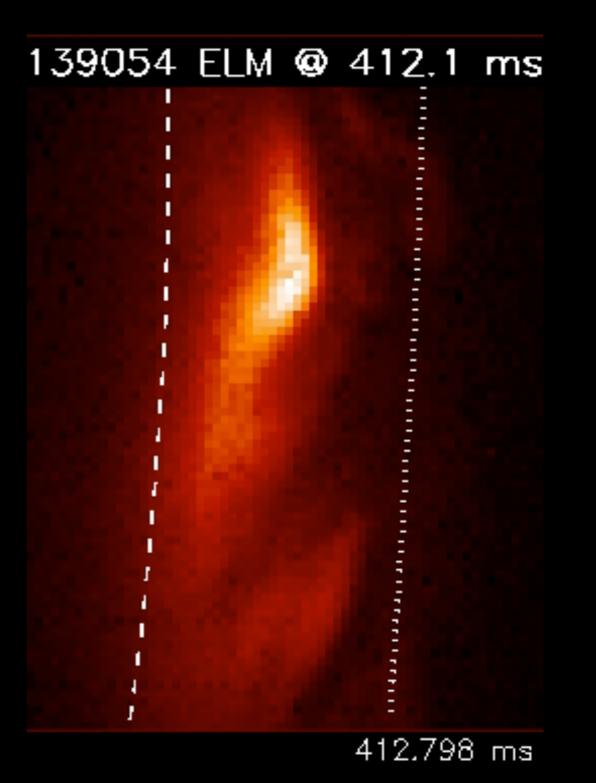
Scrape-Off Layer Dynamics



Imaging SOL with GPI

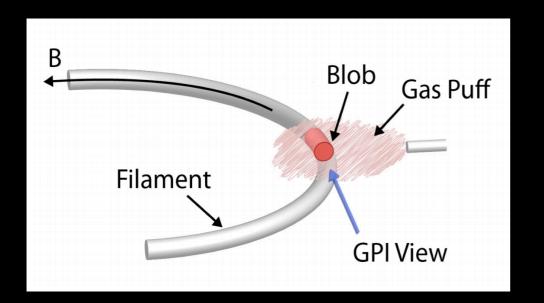
- GPI = Gas-puff imaging diagnostic (S. Zweben)
- Real-time turbulence movies in NSTX SOL
- Data taken using fast camera (400,000 fr/s)

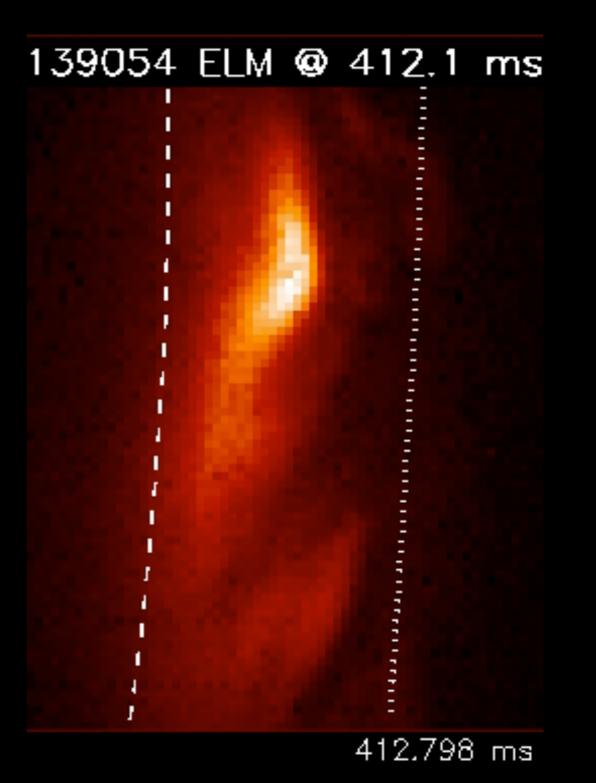




Imaging SOL with GPI

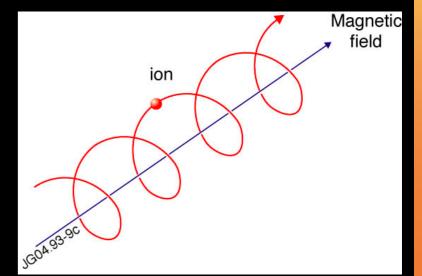
- GPI = Gas-puff imaging diagnostic (S. Zweben)
- Real-time turbulence movies in NSTX SOL
- Data taken using fast camera (400,000 fr/s)

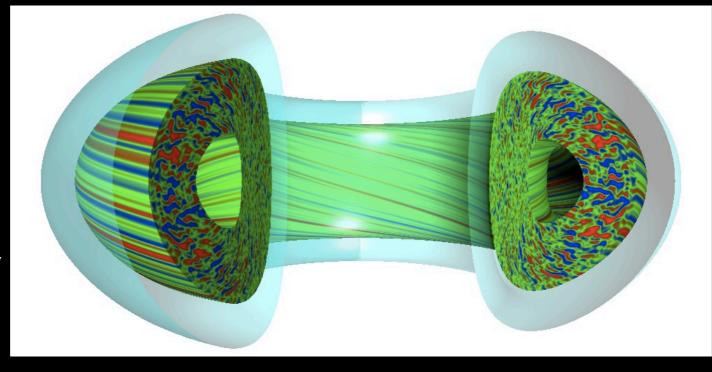




Gyro-... what??

- <u>Gyrokinetics</u> describes <u>turbulence</u> in fusion plasmas
 - "<u>Kinetic</u>": phase space with spatial dimensions AND velocity dimensions
 - "<u>Gyro</u>": reduce 6D→ 5D (3 spatial, 2 velocity) by averaging over high frequency particle gyration in strong background magnetic field





GYRO simulation, Candy

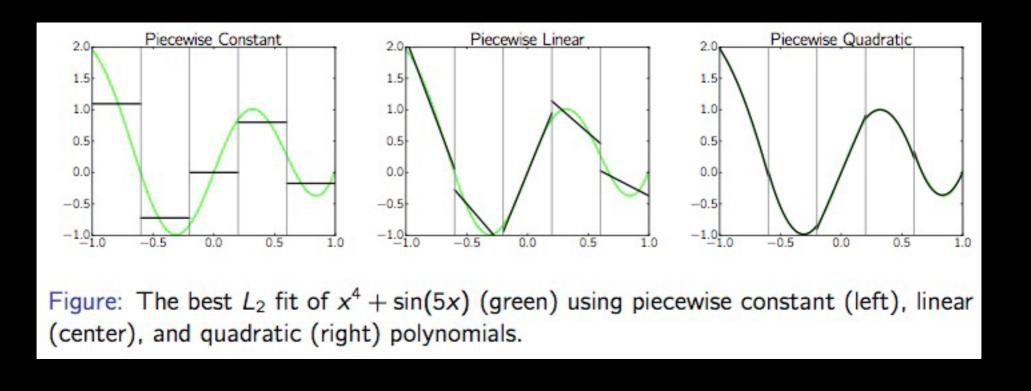
What is the gyrokinetic equation?

- Basically a hyperbolic PDE that describes time evolution of phase-space density of particles $f(x,y,z,v_{\parallel},v_{\perp}) = f(\vec{R},v_{\parallel},v_{\perp})$

$$\frac{\partial f}{\partial t} + \nabla \cdot \left(\dot{\vec{R}} f \right) + \frac{\partial}{\partial v_{\parallel}} \left(\dot{v}_{\parallel} f \right) = C[f] + S$$

$$\dot{\vec{R}} = \frac{\vec{B}}{B}v_{\parallel} + \vec{v}_{D\perp}$$
$$\dot{v}_{\parallel} = \frac{q}{m}E_{\parallel} + \dots$$

- Conservation laws are important!
 - GK is a Hamiltonian system
 - integrals of GK eq. give conservation laws for particles, energy, etc
 - conservation laws are **implicit** (e.g. no explicit energy conservation equation)



- <u>Discontinuous Galerkin</u> (DG) method
 - Class of finite-element methods with discontinuous basis functions to represent solution in each cell
 - Highly local, highly parallelizable, allows high-order accuracy, enforces local conservation laws

$$\frac{\partial f}{\partial t} + \nabla \cdot \left(\dot{\vec{R}} f \right) + \frac{\partial}{\partial v_{\parallel}} \left(\dot{v}_{\parallel} f \right) = C[f] + S$$

 $\frac{\partial f}{\partial t} + \nabla \cdot \left(\dot{\vec{R}} f \right) + \frac{\partial}{\partial v_{\parallel}} \left(\dot{v}_{\parallel} f \right) = 0$

 $\frac{\partial f}{\partial t} + \nabla_Z \cdot (\vec{\alpha} f) = 0$

$$\frac{\partial f}{\partial t} + \nabla_Z \cdot (\vec{\alpha} f) = 0$$

- DG weak form:
 - divide global phase-space domain into cells
 - multiply GK eq. by a test function w_i and integrate (by parts) over cell C_m

$$\int_{C_m} d\overrightarrow{Z} w_i \frac{\partial f}{\partial t} + \oint_{\partial C_m} dS w_i \widehat{f} \overrightarrow{\alpha} \cdot \overrightarrow{n} - \int_{C_m} d\overrightarrow{Z} f \overrightarrow{\alpha} \cdot \nabla_Z w_i = 0$$

- Implicit conservation laws via integrals:
 - particle conservation by taking w = 1
 - energy conservation by taking w = H, the Hamiltonian
 - conservation laws require integrals to be computed exactly! (i.e. no aliasing errors)
 - exact integration with numerical quadrature ~ $\mathcal{O}(N_q N_b) \sim \mathcal{O}(N_b^3)$

Orthonormal bases to the rescue

• *Modal* expansion in each cell:

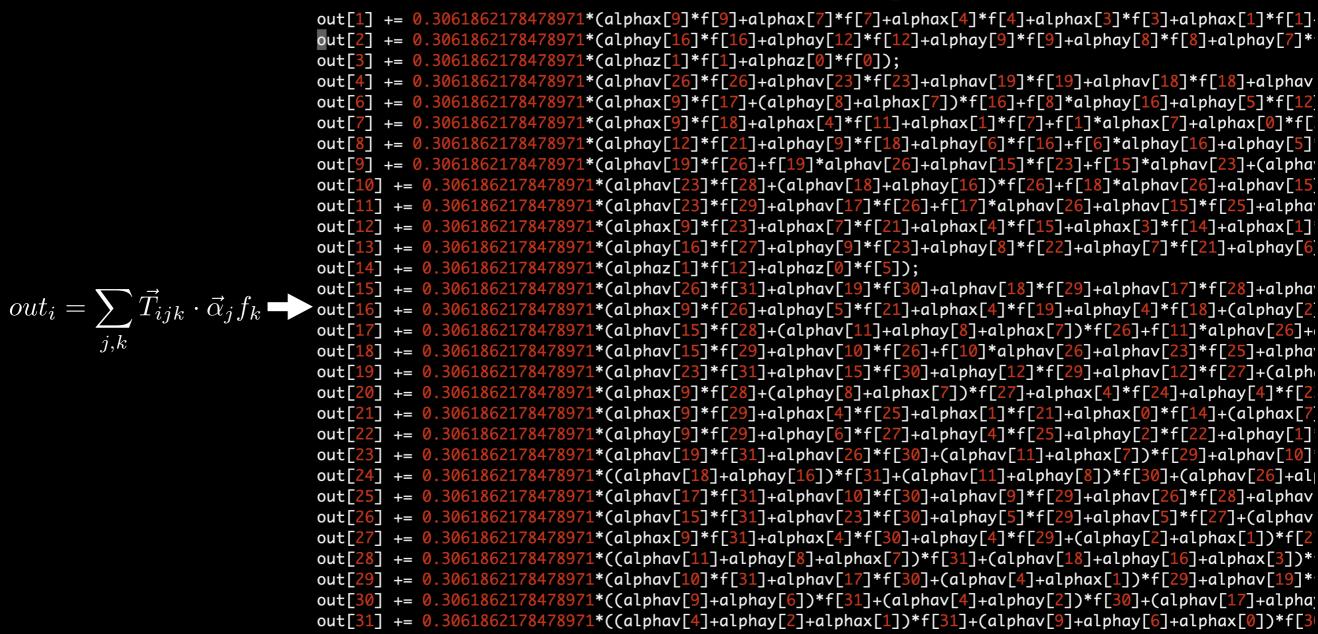
$$f(\vec{Z},t) = \sum_{k}^{N_b} f_k(t) w_k(\vec{Z})$$

• Fundamental operations are tensor products

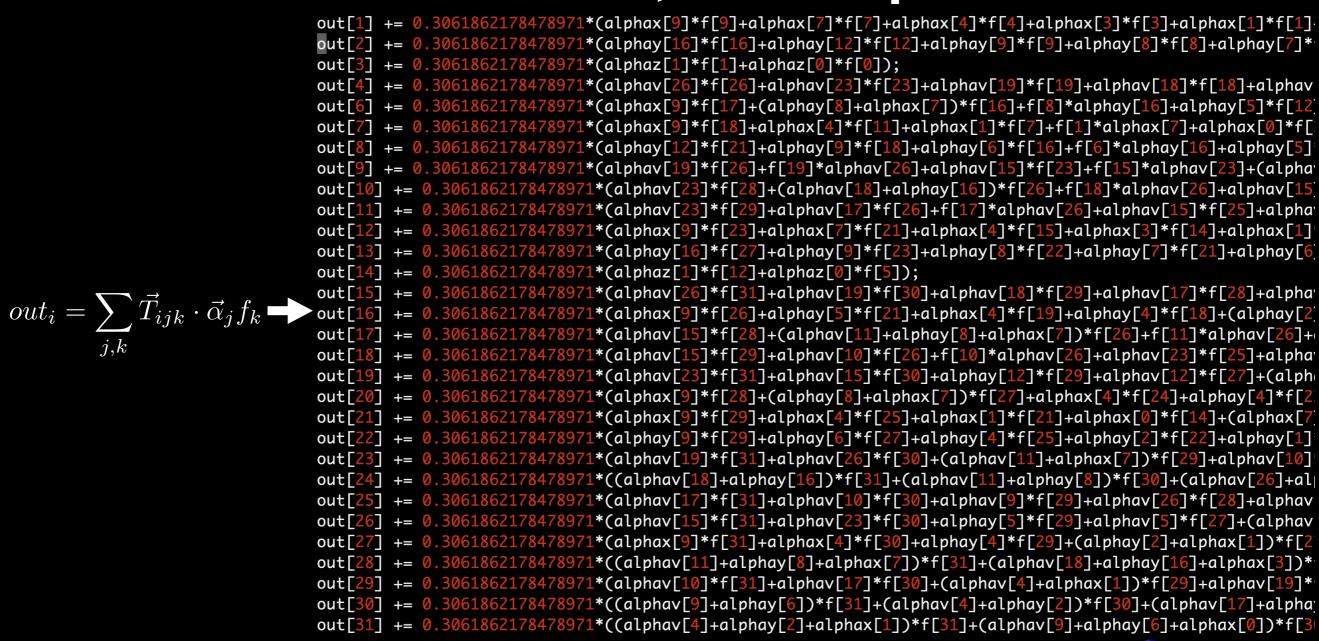
$$\int_{C_m} d\vec{Z} \ f\vec{\alpha} \cdot \nabla w_i = \sum_{j,k} \left(\underbrace{\int_{C_m} d\vec{Z} \ w_j w_k \nabla w_i}_{\vec{T}_{ijk}} \right) \cdot \vec{\alpha}_j f_k$$

- Naively, this is no better than quadrature
- But if we choose basis functions to be *orthonormal*, \vec{T}_{ijk} is sparse!
- We use Legendre polynomials as our orthonormal basis functions
- Use a computer algebra system (Maxima) to compute sparse tensor products and generate solver kernels

gkVolTerm_i : innerProd([x,y,z,vpar,vperp], 1, f_expd, alphaDotGradBasis_expd)

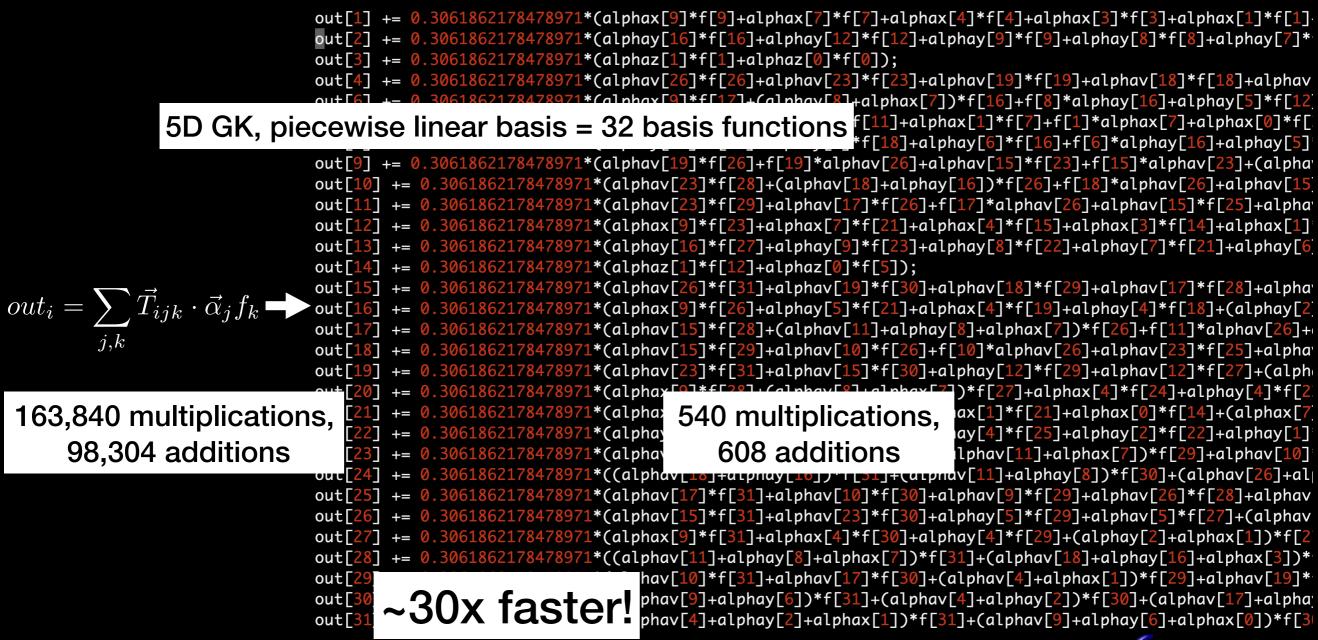


j.k



Maxima generates thousands of lines of machine-written C code... no loops!

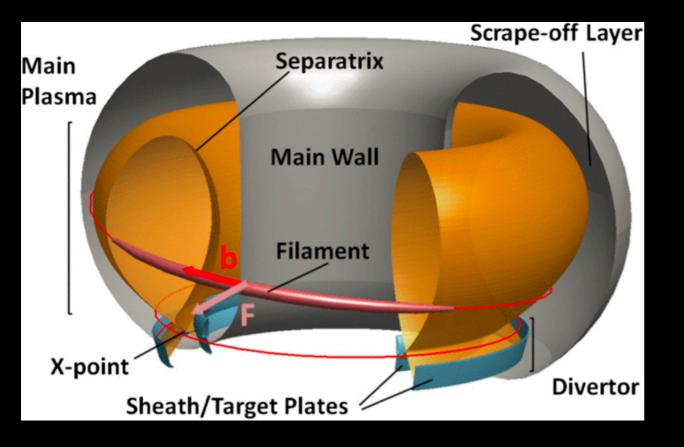
Maxima generates thousands of lines of machine-written C code... no loops!



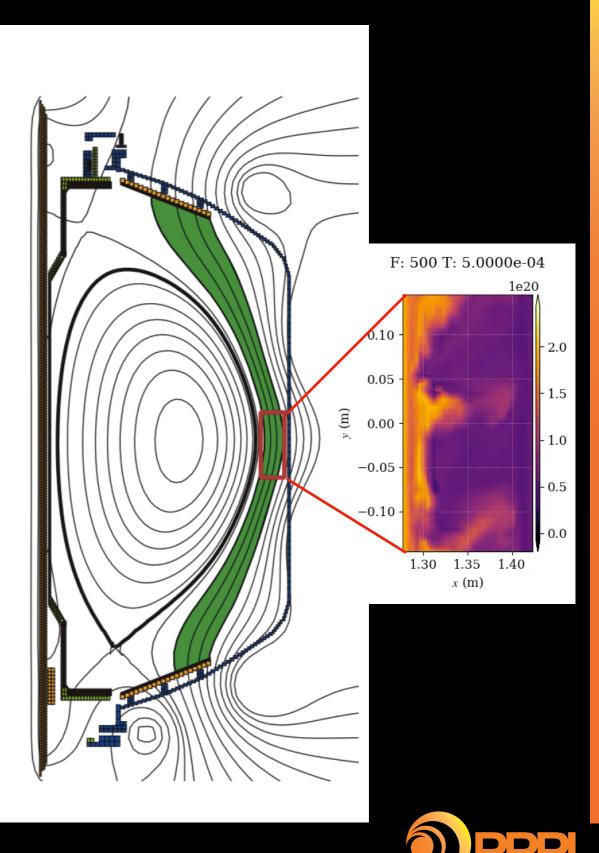
Maxima generates thousands of lines of machine-written C code... no loops!

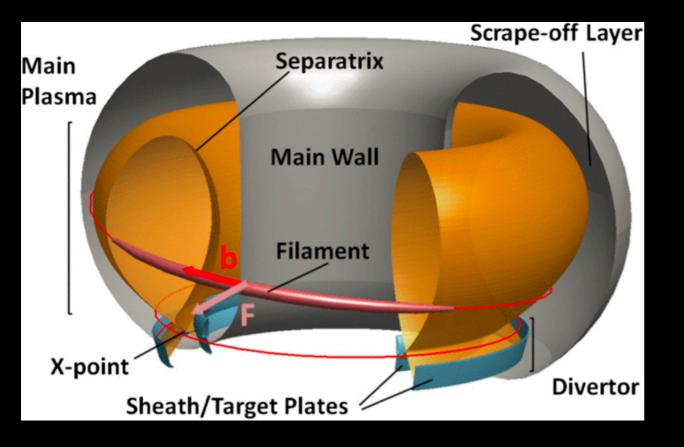


- Maxima generates thousands of lines of machine-written C code... no loops!
- Easier to generalize to different dimensionality/polynomial order, add new terms, debug/test, etc.

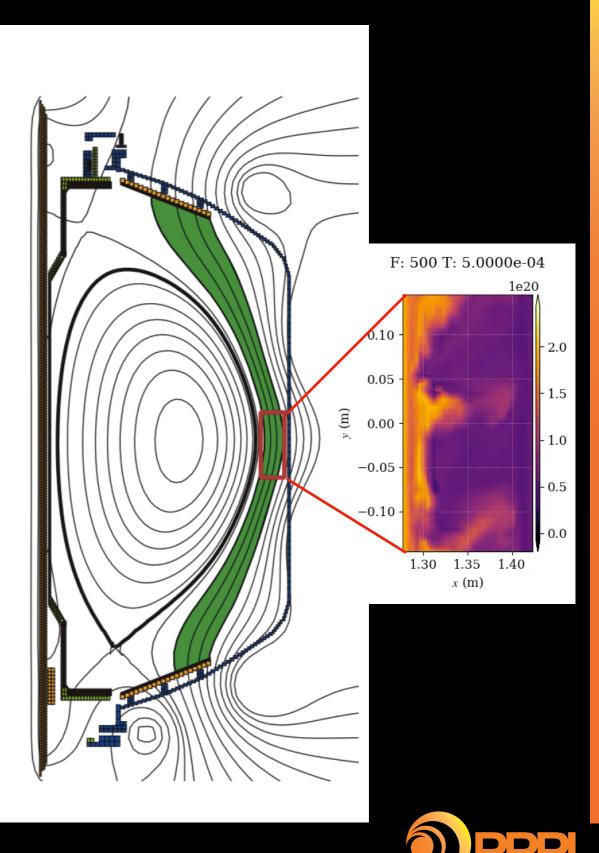


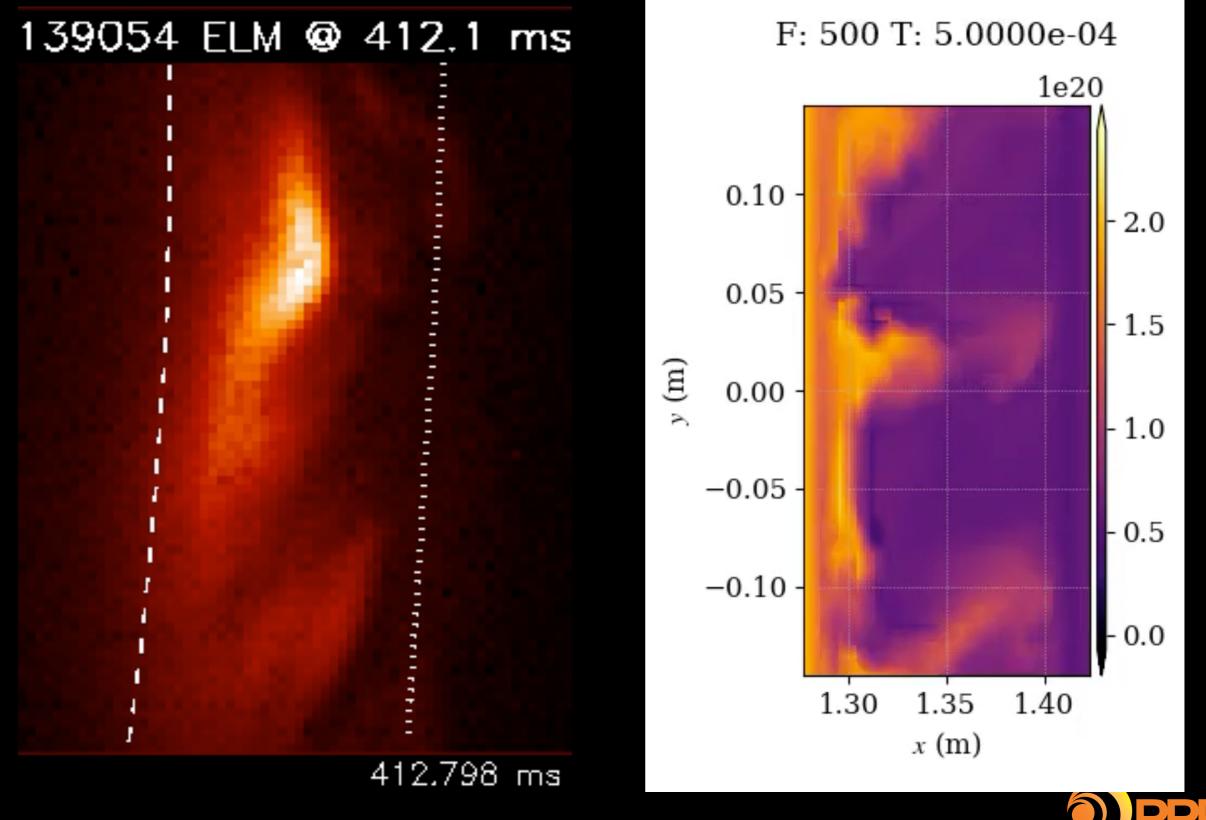
- Simple helical model of tokamak SOL
 - Field-aligned simulation domain that follows field lines from bottom divertor plate, around the torus, to the top divertor plate
 - Like the green region, but straightened out to vertical flux surfaces
 - Curvature drives interchange instability (like Rayleigh-Taylor, but with centrifugal force from curvature as "effective gravity")

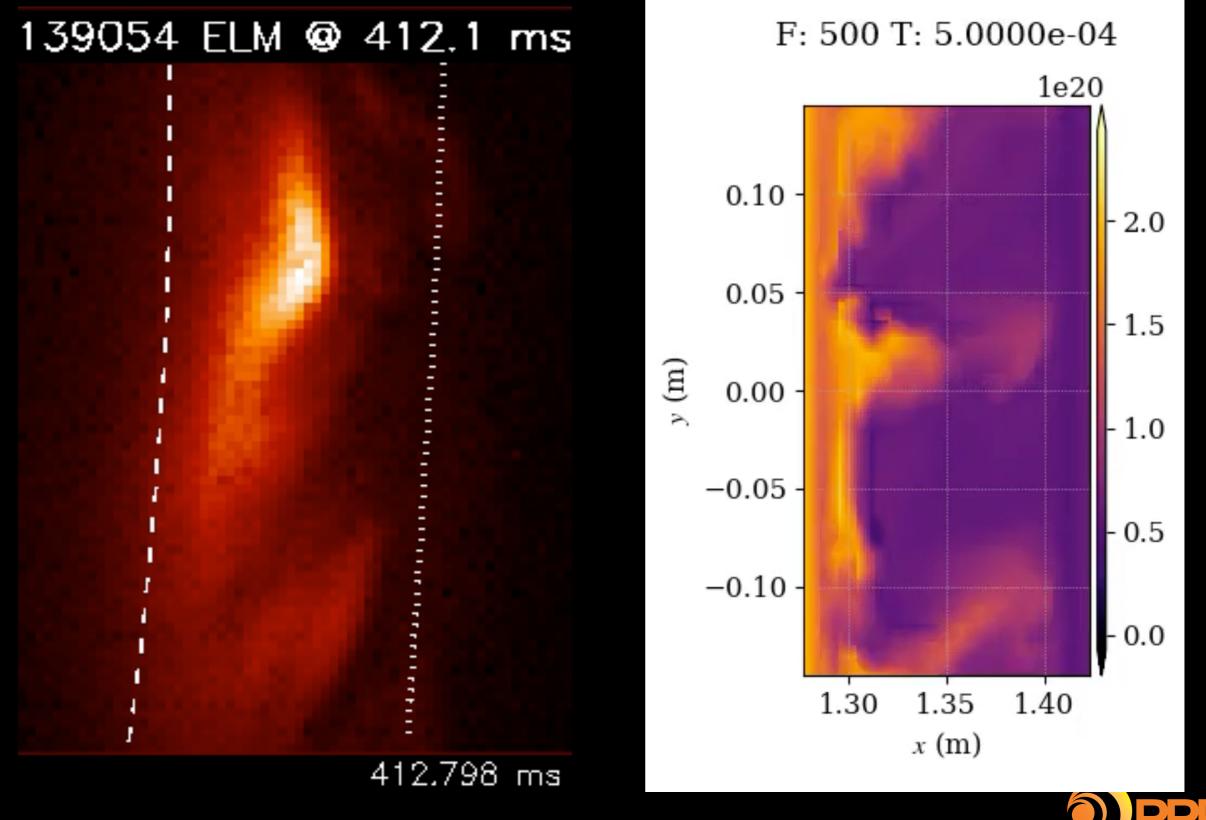




- Simple helical model of tokamak SOL
 - Field-aligned simulation domain that follows field lines from bottom divertor plate, around the torus, to the top divertor plate
 - Like the green region, but straightened out to vertical flux surfaces
 - Curvature drives interchange instability (like Rayleigh-Taylor, but with centrifugal force from curvature as "effective gravity")

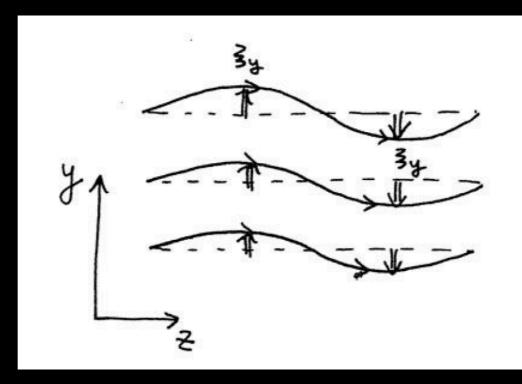






Including <u>electromagnetic</u> effects

- SOL modeling usually uses an electrostatic approximation, which neglects magnetic perturbations
- In reality, magnetic field lines can bend
- Example: Alfven waves
 - Field lines behave like taut strings, "plucked" by plasma motion
 - Magnetic "tension" restoring force ~ B^2 ; string mass from plasma ~ ho
 - Higher $\beta \sim \rho/B^2 \rightarrow$ larger magnetic perturbations



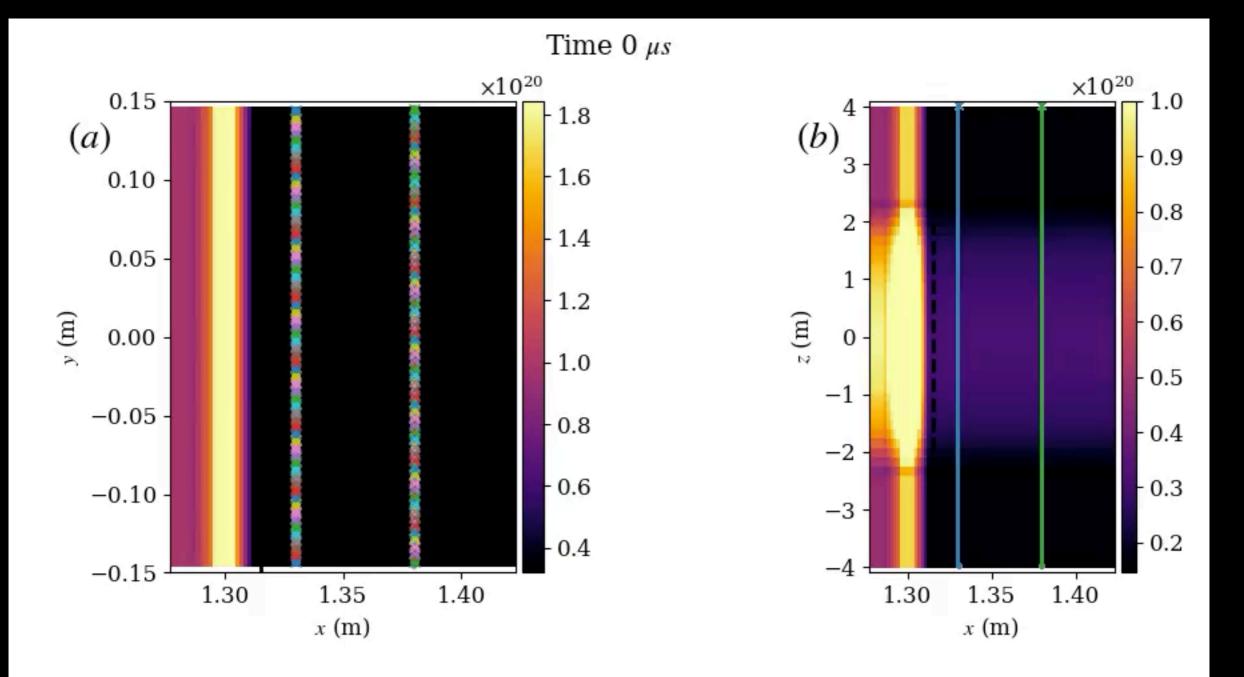
Electromagnetic GK in SOL



Electromagnetic GK in SOL

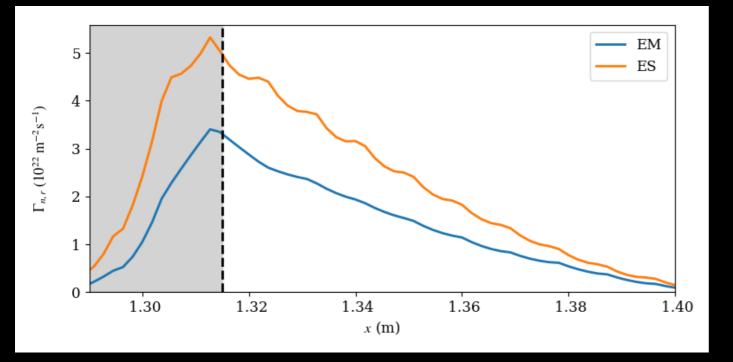


Electromagnetic GK in SOL

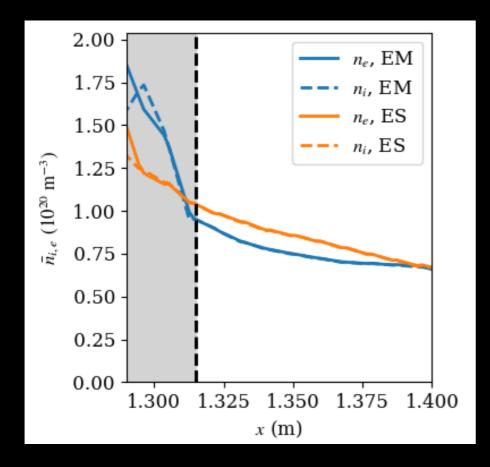


First ever electromagnetic GK simulations of SOL!

Does EM affect transport?



Particle transport is reduced when EM effects included



 Results in flatter density profiles in SOL

Thank you CSGF!!

Gkeyll team: Greg Hammett Ammar Hakim Jimmy Juno Mana Francisquez Tess Bernard Petr Cagas Eric Shi

https://bitbucket.org/ammarhakim/gkyl/src/default/

https://gkeyll.readthedocs.io/en/latest/index.html

