The Multi-D Effects of Jets on Neutron Star Merger Light Curves

Hannah Klion (UC Berkeley), Paul Duffell (Harvard CFA), Eliot Quataert (UC Berkeley), Daniel Kasen (UC Berkeley, LBNL)

radioactive

"kilonova" or "macronova"

GW170817 / AT2017gfo: An Unusual Transient

What next?

What kind of diversity can we expect to see in subsequent kilonovae?

What next?

What are the effects of different viewing angles?

Focusing on **shock-heating** due to a prompt jet and **changes to density structure**

Two of the Possible Sources of Heating

Shock heating from a jet

(incl. Kasliwal+'17, Piro & Kollmeier'17)

Radioactive decay of nucleosynthesis products

(incl. Metzger+'10)

~seconds

10⁴⁹ - 10⁵⁰ erg

~seconds to days

10⁵⁰ erg

Approach

t ~ 10 ms to t ~ 100 s

adiabatic expansion

r-process heating (Metzger+'10, Lippuner & Roberts '15)

2D relativistic hydrodynamic simulation (in JET) of jet interacting with expanding outflow (Duffell + (incl **Klion**) '18) 2D Monte Carlo radiation transport simulations with Sedona

t ~15 min to t ~ 10 days

Jet-Ejecta Hydrodynamic Simulations

Sedona: Parallel Multi-D Monte Carlo Radiation Transport Code (Kasen + '06, update in prep.)

Sedona: Parallel Multi-D Monte Carlo Radiation Transport Code

Background gas

@ each cell

- Opacity
- Temperature
- Composition
- Radiation field

Particles

for each particle

- Photon frequency
- Total energy
- Direction

Recent and Ongoing Development

Added capability to checkpoint and restart simulations (including saving and restarting the state of the random number generators)

Added doubly diffusive Monte Carlo transport (with frequency-dependent opacity!)

Parallelize everything in OpenMP

Move towards GPUs

Input Models + r-process

Light curves are brighter along pole than on equator

Amount of brightening along jet correlates with how much jet affects density distribution

Equatorial light curves match failed jet case

Jet shock heating does not affect light curves

HK + '19, in prep

obs L_{bol} from Drout + '17

Temperature is higher along jet axis due to emission from hot central ejecta

Summary

- Sedona is a multi-dimensional Monte Carlo radiation transport code
- Unlikely that light curve is dominated by shock heating from a jet
- r-process heating greatly exceeds shock heating
- Jet changes the structure of the ejecta, giving viewing-angle effects that depend on jet energy and opening angle
- ✤Jet-affected viewing angles are brighter and possibly somewhat bluer

Thank you

University of California BERKELEY Department of ASTRONOMY

Eliot Quataert, Dan Kasen, Paul Duffell, Abigail Polin, David Khatami, Chelsea Harris, Peter Nugent

Bronson Messer, Tom Papatheodore, Austin Harris, Judy Hill, Jim Hack