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About this talk

● Introduction to optimal transport
○ Formulation and applications
○ Recent computational advances
○ Hope for the future

● Robust stochastic optimization
○ Approaches using OT
○ Duality and computation

● The roadmap from here 

Joint work with:

Jose Blanchet Aaron Sidford

Ruodu Wang

And 
others!



Optimal transport according to Monge (1781)



In pictures...



In pictures...



Mathematically Speaking
● Two probability distributions: 
● A sensible transportation cost:

● Compute

where                     means 



Kantorovich’s Refinement
● Finding the map             could be an ill-posed problem!
● Better to relax the problem and compute

where                is the set of all joint distributions over              with marginals

● An infinite dimensional LP! With an elegant dual! 



Rich mathematical structure
● Dual problem (dual variables are continuous, bounded functions)

● When                                        for some distance function                 we get a 
notion of distance between distributions-- namely the Wasserstein distance!

● When               the dual become particularly elegant. Can you say Wasserstein 
GAN?



A toy example
● When      and      are one dimensional and the cost is “pretty nice,” say

the transport is quite natural

where            are the cumulative distribution functions for              respectively.

● Intuitively consistent, matches quantiles with “no crossings.”
● Highly dependent on the ordering of the real line. Does not generalize to 

higher dimensions!



Getting the picture...
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Lots and lots of applications!

● Assignment and routing
● Contrast equalization and texture synthesis
● Image matching, image fusion, and shape registration
● Market design, robust derivative pricing and risk aggregation
● Embeddings, feature aggregation, and dimensionality reduction
● Music transcription and record restoration
● Drug screening, protein folding, and cancer detection
● Sampling and Bayesian inference
● Robust stochastic optimization*

Plus 5 or 6 Nobel prizes and Fields medals



Photogenic applications



Photogenic applications



Computational Optimal Transport
● Beyond 1-dimension, highly non-trivial to compute either primal

● In infinite dimensions one must discretize

● Typically, discretization appears in the marginals. Empirical margins (sum of 
point masses) are assumed.



Computational Optimal Transport
● Under marginal discretization the infinite dimensional LP becomes a finite 

dimensional!

● So the problem is solved? Plug and chug for our favorite LP solver?
● Computational scale will hit you in the face as the curse of dimensionality 

kicks in.
●      is on the order              . In theory we would like                , in practice, take as 

much data as you can get
● At best, the fastest LP solver will get you                          . In practice, count on 

doing worse with such a black box approach



Computational Optimal Transport
● Significantly more structure than your average LP. Constraints provide special 

structure!
● Key insight along these lines was by Cuturi: regularize with entropy              

● Taking the dual + alternating minimization = an elegant and practical 
algorithm (arguably the most popular method for computing OT)

● Recently, it was shown to be almost linear

● The dependence on the tolerance is still punishing!



Computational Optimal Transport
● Can we do better?

● Key idea: exploit connections to packing LPs and matrix scaling

● Intuition: apply highly specialized first and second order methods. 
● Accelerated coordinate descent (packing LP)  and box-constrained Newton 

method (matrix scaling)

“There's Plenty of Room at the 
Bottom”



Computational Optimal Transport

● Beats previous complexities (attains best known) and offers scalable parallel 
depth

● Even practical, serial implementations are competitive with Sinkhorn! 
Additionally, the                  provides greater numerical stability

● Parallel discovery with Kent Quanrud. 
● Co-authors recently created a direct, fully first order algorithm with the same 

parallel depth!
● Same performance attained by two, largely orthogonal methods. 

Coincidence?

in work in depth



Lower bounds
● Theme: lower bounds particularly in the linear work regime are hard!
● We show that a method which does less than                  work would give a  

algorithm                   for maximum cardinality bipartite matching
● Means further computational complexity would be highly surprising! 
● Only known algorithms which achieve this running time use fast matrix 

multiplication. No flow-based algorithms!
● Pseudo-complexity reduction, however, since no formal hardness or 

information theoretic lower bound.



Further progress
● Sorry Mr. Feynman! There’s no more room here!         ….Or is there?
● Many costs are highly structured, sub-linear performance of Sinkhorn can still 

observed in practice. Think 2-norm squared cost!
● Recent work, showing that exploitation of low-rank cost matrix leads to fast, 

sublinear iterations for Sinkhorn!
● Lesson for computational scientists: when a lower bound hits you in the face, 

make further assumptions!
● Continued progress is also quite plausible! Most “nice” transports are sparse!



Part 2: How a Practicum Can Inspire You



Robust Optimization in a Nutshell
● Consider a linear program of the form

in practice we really don’t know  . Typically we have an estimate  and some 
bounds

● Really, we’d like to compute

● Carson’s practicum 2017 at ANL was based around robust optimization for 
nonlinear problems.



Themes of Robust Optimization
● Robust problems might appear to be a complex animal. Formulation is 

bi-level, necessitating advanced techniques (e.g. mirror-prox, alternating 
min/maximization)

● Key trick: duality! 

● Robustness of a solution at any level is not computable. If you require  your 
problem will easily become NP-hard!



Wasserstein Robust Optimization
● Consider the robust “infinite dimensional” LP

where denotes a ball in optimal transport distance.

● Similarly we can use duality to rewrite the problem as

● Surprisingly, our infinite dimensional problem has now become a finite 
dimensional one!

● Lesson: take the dual!



Distributionally Robust Optimization
● Our recent results:

○ Under smoothness assumptions on     we precisely quantify the level of robustness    for which 
the problem is computationally solvable

○ We extend duality to the multi-marginal case, i.e. the intersection of multiple balls in optimal 
transport distance

● Why is this important?
● Allows us to give an actual computational analogue of “Frank-Wolfe in infinite 

dimensions.” Algorithms with exact parameters as opposed to heuristics are 
also nice.

● The multi-marginal case allows us to perform stochastic optimization which 
is robust to violations of independence! Key application: risk aggregation!



Future directions
● If we can do Frank-Wolfe, why not gradient flows in infinite dimensions?
● With multiple-margins, how about robust reinforcement learning?
● How about a general framework for statistical estimators which accurately 

handle violations of independence?
● Big idea: it’s a wild-west out there in optimal transport and robust 

optimization!
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