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About this talk

Introduction to optimal transport
o Formulation and applications
o Recent computational advances
o Hope for the future

Robust stochastic optimization
o Approaches using OT
o Duality and computation

The roadmap from here

Joint work with:

Aaron Sidford

And
others!

Ruodu Wang



Optimal transport according to Monge (1781)

When one has to bring earth
from one place to another...



In pictures...
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In pictures...




Mathematically Speaking

e Two probability distributions: i,
e Asensible transportation cost: ¢(X,Y")

e Compute

T :argmin/c(X,T(X))d,u

Typ=v

where T#,u — y means T(X) ~ U



Kantorovich’'s Refinement

e Finding the map 7T'(X) could be an ill-posed problem!
e Better to relax the problem and compute

7 = arg min /C(X, Y)dm
el (p,v)

where I1(u, v) is the set of all joint distributions over (X, Y") with marginals
v

e An infinite dimensional LP! With an elegant dual!



Rich mathematical structure

Dual problem (dual variables are continuous, bounded functions)

max d +/ dv
¢(X)+9(Y)<c(X,Y) /gb K v

When ¢(X,Y) = d(X, Y )?for some distance function d(X,Y ) we get a
notion of distance between distributions-- namely the Wasserstein distance!

When p = 1 the dual become particularly elegant. Can you say Wasserstein
GAN?

ma /gb (dji— dv)

¢€Lip,



A toy example

e When 1/ and [[ are one dimensional and the cost is “pretty nice,” say
¢o(X,Y)=|X-Y]
the transport is quite natural
T(X)=G" (F(X))
where F’, (G are the cumulative distribution functions for [, U respectively.

e Intuitively consistent, matches quantiles with “no crossings.”

e Highly dependent on the ordering of the real line. Does not generalize to
higher dimensions!



Getting the picture...




Getting the picture...




Lots and lots of applications!

| Plus 5 or 6 Nobel prizes and Fields medals

Assignment and routing

Contrast equalization and texture synthesis

Image matching, image fusion, and shape registration

Market design, robust derivative pricing and risk aggregation
Embeddings, feature aggregation, and dimensionality reduction
Music transcription and record restoration

Drug screening, protein folding, and cancer detection

Sampling and Bayesian inference

Robust stochastic optimization*



Photogenic applications
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Photogenic applications




Computational Optimal Transport

e Beyond 1-dimension, highly non-trivial to compute either primal

T = argmin/c(X,Y) dm VP = arg max /gbd,u—l—/wdu

mEI(p,v) H(X)+Y(Y)<e(X,Y)
e Ininfinite dimensions one must discretize
v=>Y 0, p= Y 6
i€[N] i€[N]
e Typically, discretization appears in the marginals. Empirical margins (sum of
point masses) are assumed.



Computational Optimal Transport

e Under marginal discretization the infinite dimensional LP becomes a finite

dimensional!
min (C, X) Ur,e) = {X e R : X1 =r,X"1=c}
XeU(r,c)

e So the problem is solved? Plug and chug for our favorite LP solver?

e Computational scale will hit you in the face as the curse of dimensionality
kKicks in.

e X isontheorder O (N2). In theory we would like N ~ in in practice, take as
much data as you can get ‘

e At best, the fastest LP solver will get you 0O <N2'5 log l) . In practice, count on
doing worse with such a black box approach ‘



Computational Optimal Transport

e Significantly more structure than your average LP. Constraints provide special
structurel!
e Key insight along these lines was by Cuturi: regularize with entropy H (X))
xioin (C, X) —nH(X)
e Taking the dual + alternating minimization = an elegant and practical
algorithm (arguably the most popular method for computing OT)
e Recently, it was shown to be almost linear

2
o (Ls )
€

e The dependence on the tolerance is still punishing!



Computational Optimal Transport

e Can we do better?

“There's Plenty of Room at the
Bottom”
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e Key idea: exploit connections to packing LPs and matrix scaling

max {dT:z: - Ax < b}

N2
x€R+

e Intuition: apply highly specialized first and second order methods.
e Accelerated coordinate descent (packing LP) and box-constrained Newton
method (matrix scaling)



Computational Optimal Transport

e Beats previous complexities (attains best known) and offers scalable parallel

depth 2 1
0, (M) in work 0, (-> in depth

€ €

e Even practical, serial implementations are competitive with Sinkhorn!
Additionally, the O (1/¢) provides greater numerical stability

e Parallel discovery with Kent Quanrud.

e (Co-authors recently created a direct, fully first order algorithm with the same
parallel depth!

e Same performance attained by two, largely orthogonal methods.
Coincidence?



Lower bounds

e Theme: lower bounds particularly in the linear work regime are hard!

e We show that a method which does less than O (N?/¢)work would give a
algorithm o (m2'5)for maximum cardinality bipartite matching

e Means further computational complexity would be highly surprising!

e Only known algorithms which achieve this running time use fast matrix
multiplication. No flow-based algorithms!

e Pseudo-complexity reduction, however, since no formal hardness or
information theoretic lower bound.



Further progress

e Sorry Mr. Feynman! There's no more room here! ....0r is there?

e Many costs are highly structured, sub-linear performance of Sinkhorn can still
observed in practice. Think 2-norm squared cost!

e Recent work, showing that exploitation of low-rank cost matrix leads to fast,
sublinear iterations for Sinkhorn!

e Lesson for computational scientists: when a lower bound hits you in the face,
make further assumptions!

e Continued progress is also quite plausible! Most “nice” transports are sparse!



Part 2: How a Practicum Can Inspire You



Robust Optimization in a Nutshell

e Consider a linear program of the form
T

min cx
T ERM

subject to Az <b
in practice we really don't know . Typically we have an estimate and some

bounds

e Really, we'd like to compute .

min max cx
x ceU

subject to Ax <b
e Carson’s practicum 2017 at ANL was based around robust optimization for

nonlinear problems.



Themes of Robust Optimization

e Robust problems might appear to be a complex animal. Formulation is
bi-level, necessitating advanced techniques (e.g. mirror-prox, alternating
min/maximization)

e Key trick: duality!

min o

T\

subject to Wlaz + X =0
Az <b
A>0

e Robustness of a solution at any level is not computable. If you require your
problem will easily become NP-hard!



Wasserstein Robust Optimization

Consider the robust “infinite dimensional” LP

d
pmax_ [ g

where denotes a ball in optimal transport distance.

Similarly we can use duality to rewrite the problem as

inf AJ + / ( sup F(Y) — Ae(X, Y)) dv

A>0 Y €eR™
Surprisingly, our infinite dimensional problem has now become a finite
dimensional one!
Lesson: take the dual!



Distributionally Robust Optimization

Our recent results:

o Under smoothness assumptions on  we precisely quantify the level of robustness for which
the problem is computationally solvable

o We extend duality to the multi-marginal case, i.e. the intersection of multiple balls in optimal
transport distance

Why is this important?

Allows us to give an actual computational analogue of “Frank-Wolfe in infinite
dimensions.” Algorithms with exact parameters as opposed to heuristics are
also nice.

The multi-marginal case allows us to perform stochastic optimization which
is robust to violations of independence! Key application: risk aggregation!



Future directions

e If we can do Frank-Wolfe, why not gradient flows in infinite dimensions?

e With multiple-margins, how about robust reinforcement learning?

e How about a general framework for statistical estimators which accurately
handle violations of independence?

e Bigidea: it's a wild-west out there in optimal transport and robust
optimization!
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