

Quantum computation for science

Jarrod McClean @JarrodMcClean Senior Research Scientist

CSGF and my path...

Early application areas

Age of universe $\sim 14 \times 10^9$ years

What is quantum?

"Classical"

"Quantum"

Quantum System – A physical system operated in a regime where we need effects like discrete energy levels and interference are required to accurately describe it.

Google Al Quantum

Simulation

Orrery

Antikythera Mechanism (125 B.C)

Quantum System \rightarrow Quantum System

Quantum systems

Quantum simulation - the quantum advantage

Quantum computing abstraction

$$\begin{array}{c} |0\rangle = \left(\begin{array}{c} 1\\ 0 \end{array} \right) \\ |1\rangle = \left(\begin{array}{c} 0\\ 1 \end{array} \right) \end{array}$$

$$X = \text{NOT} = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$X |0\rangle = |1\rangle$$
$$X |1\rangle = |0\rangle$$

Debunking quantum myths

MYTH 1: Faster/better because it can use an exponential number of states

MYTH 2: Faster/better because bits can be 0 and 1 at the same time.

MYTH 3: Work by computing all the answers in parallel

Challenges in quantum computation

Better Hardware

Co-Design Better Algorithms

Previous: Coherence time flexible

Future:

- Improved coherence time flexibility, novel property extraction, and demonstration
- Qubit number flexible algorithms and larger demonstrations

Thinking differently for speedups

Classical:

$$Ax = b$$

Solution translates to writing down the entries of \boldsymbol{x}

Quantum*:

$$A|x\rangle = |b\rangle$$

Solution translates to preparing state x from which one can sample

Solving the problem, not reproducing the classical algorithm!

*A. Harrow, A. Hassidim, S. Lloyd, Phys. Rev. Lett. **103**, 150502 (2009)

**B. D. Clader, B. C. Jacobs, and C. R. Sprouse Phys. Rev. Lett. 110, 250504 (2013)

Early application areas

Quantum

Relation Representation

Simulating Chemistry

Quantum

Electronic structure

"The underlying physical laws necessary for the mathematical theory of a large part of physics and **the whole of chemistry** are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

-Paul Dirac

How big might the speedup be?

 $\mathcal{H} \left| \psi \right\rangle = E \left| \psi \right\rangle$

Exponential Speedup: 10^{82} Years \rightarrow 300 Seconds (Age of the Universe ~ 10^{10} Years)

But classical probability distributions...?

Google Al Quantum

$$P_1(\text{Store}_i) \qquad P_2(\text{Store}_j)$$
$$P_{12}(\text{Store}_i, \text{Store}_j) \neq P_1(\text{Store}_i) P_2(\text{Store}_j)$$
$$O(N^P)$$

Key caveat: Our distributions may be complex valued

Classically – No clear path to accurate solution Quantum Mechanically – 150-200 logical qubits for solution

Google Al

Jantum

attachment almost totally unknown

Using a post-supremacy device for simulation

Goal: Simulation of interesting physical phenomena as close to classically intractable as possible

Not: Largest possible experiment one can squint at and see a curve through - **fidelity and accuracy** matter

Prediction (opinion): Doing an interesting simulation beyond 20 qubits will be extremely difficult without error reduction techniques, even with great fidelities

$f_{2q} = 0.999$	$F(n,L) \approx f_{2q}^{Ln/2}$
$\Delta_{\mathrm{H}_2} \approx 0.5 \ E_h$	$F(20,20) \approx 0.81$
$\Delta E_{\rm H_2} \ge (1 - F) \Delta_{\rm H_2}$	$\approx 0.09 \ E_h$

Today: Can quantum error correction theory help us on NISQ devices? And some additional challenges...

Bristlecone

Quantum-Classical variational algorithms in a nutshell

Chemistry **Nuclear Physics Optimization** (QAOA) Machine learning Algorithm learning

Peruzzo⁺, McClean⁺, Shadbolt, Yung, Zhou, Love, Aspuru-Guzik, O'Brien. Nature Communications, 5 (4213):1–7,

A network in hardware

P.J.J. O'Malley, R. Babbush,..., J.R. McClean et al. "Scalable Simulation of Molecular Energies" Physical Review X 6 (3), 031007 (2016)

Displays natural error suppression

Learning from history - vanishing gradients

$$\delta^{l} = \Sigma'(z^{l})(w^{l+1})^{T}\Sigma'(z^{l+1})(w^{l+2})^{T}\dots\Sigma'(z^{L})\nabla_{a}C$$

Loss/Objective

BLACK HOLES IN YOUR CIRCUITS?

Google Al Quantum J.R. McClean, S. Boixo, V.N. Smelyanskiy, R. Babbush, H. Neven "Barren plateaus in quantum neural network training landscapes" *Nature Communications* Vol **9**, 4812 (2018)

Going beyond VQE without more qubits or gates

Quantum State on Quantum Device

Extra Quantum Measurements

Classical Generalized Eigenvalue Problem

HC = SCE

A lot more than you'd think...

Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States McClean, J.R., Schwartz, M.E, Carter, J., de Jong, W.A. Physical Review A 95 (4), 042308 (2017)

Surprise - Mitigates incoherent errors in experiment

"Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm" Colless, Ramasesh, Dahlen, Blok, Kimchi-Schwartz, **McClean**, Carter, de Jong, Siddiqi *Phys. Rev. X* **8**, 011021 (2018)

Google Al Quantum

Error correction at a glance

Code words / logical states

$$\bar{0} = 000$$
 $\bar{1} = 111$

Ex. Single Bit Flip

$$\bar{0}' = 100 \xrightarrow{\text{Majority Vote}} \bar{0}$$

Ex. Two Bit Flips
$$\bar{0}'' = 101 \xrightarrow{\text{Majority Vote}} \bar{1}$$

Google Al Quantum

Code words / logical states $|\bar{0}\rangle = |000\rangle$ $|\bar{1}\rangle = |111\rangle$ $|\bar{\Psi}\rangle = \alpha |000\rangle + \beta |111\rangle$ Ex. Single Bit Flip $|\bar{\Psi}'\rangle = \alpha |100\rangle + \beta |011\rangle$ $\{Z_1Z_2, Z_2Z_3\} \rightarrow \{s_1, s_2\}$ Decode error. Recover $|\Psi\rangle = \alpha |000\rangle + \beta |111\rangle$

A sketch of stabilizer codes

Choose a commuting group of Pauli operators on n qubits $\ {\cal S}$ denote this the "stabilizer group"

Define codewords to be set of +1 eigenstates of these operators

Ex. For the repetition code

$$\mathcal{S} = \langle Z_1 Z_2, Z_2 Z_3 \rangle$$

Choose a set of commuting operators from the Pauli group \mathcal{L} to denote logical operations

Ex. For the repetition code

$$\mathcal{L} = \langle X_1 X_2 X_3, Z_1 Z_2 Z_3 \rangle$$

$$\bar{X}|\bar{0}\rangle = X_1 X_2 X_3|000\rangle = |111\rangle = |\bar{1}\rangle$$

Error correction vs projection

(+) Scalable to exponential error suppression (-) Requires explicit syndrome measurements (-) Requires feedforward or unitary decoding

 $P_i = \frac{1}{2} \left(1 + S_i \right) \qquad \bar{P}_{\text{code}} = \prod P_i$

(+) Often reduces errors considerably for small experiments

(+) Doesn't require explicit syndrome measurements or feedforward

+1

Logical

Error

-1

(+) Can be used to test codes without full hardware for correction

(+) Like error detection but without explicit stabilizers and can explore some recovery channels

(-) May require many measurement repetitions

(-) Not scalable to exponential error suppression by construction

Domain knowledge matters

Year	Reference	Representation	Algorithm	Time Step Depth	Coherent Repetitions	Total Depth
2005	Aspuru-Guzik et al. [1]	JW Gaussians	Trotter	$\mathcal{O}(\mathrm{poly}(N))$	$\mathcal{O}(\mathrm{poly}(N))$	$\mathcal{O}(\operatorname{poly}(N))$
2010	Whitfield et al. [2]	JW Gaussians	Trotter	$\mathcal{O}(N^5)$	$\mathcal{O}(\mathrm{poly}(N))$	$\mathcal{O}(\mathrm{poly}(N))$
2012	Seeley et al. [3]	BK Gaussians	Trotter	$\widetilde{\mathcal{O}}(N^4)$	$\mathcal{O}(\mathrm{poly}(N))$	$\mathcal{O}(\mathrm{poly}(N))$
2013	Perruzzo et al. [4]	JW Gaussians	UCC	Variational	Variational	$\mathcal{O}(\mathrm{poly}(N))$
2013	Toloui et al. [5]	CI Gaussians	Trotter	${\cal O}(\eta^2 N^2)$	$\mathcal{O}(\mathrm{poly}(N))$	$\mathcal{O}(\mathrm{poly}(N))$
2013	Wecker et al. [6]	JW Gaussians	Trotter	$\mathcal{O}(N^5)$	$\mathcal{O}(N^6)$	$\mathcal{O}(N^{11})$
2014	Hastings et al. [7]	JW Gaussians	Trotter	$\mathcal{O}(N^4)$	$\mathcal{O}(N^4)$	$\mathcal{O}(N^8)$
2014	Poulin et al. [8]	JW Gaussians	Trotter	$\mathcal{O}(N^4)$	$\sim N^2$	$\sim N^6$
2014	McClean et al. [9]	JW Gaussians	Trotter	$\sim N^2$	$\mathcal{O}(N^4)$	$\sim N^6$
2014	Babbush et al. [10]	JW Gaussians	Trotter	$\mathcal{O}(N^4)$	$\sim N$	$\sim N^5$
2015	Babbush et al. [11]	JW Gaussians	Taylor	$\widetilde{\mathcal{O}}(N)$	$\widetilde{\mathcal{O}}(N^4)$	$\widetilde{\mathcal{O}}(N^5)$
2015	Babbush et al. [12]	CI Gaussians	Taylor	$\widetilde{\mathcal{O}}(N)$	$\widetilde{\mathcal{O}}(\eta^2 N^2)$	$\widetilde{\mathcal{O}}(\eta^2 N^3)$
2015	Wecker et al. [13]	JW Gaussians	UCC	Variational	Variational	$\mathcal{O}(N^4)$
2016	McClean et al. [14]	BK Gaussians	UCC	Variational	Variational	${\cal O}(\eta^2 N^2)$
2017	Babbush et al. [15]	JW Plane Waves	Trotter	$\mathcal{O}(N)$	$\mathcal{O}(\eta^{1.83} N^{0.67})$	$\mathcal{O}(\eta^{1.83}N^{1.67})$
2017	Babbush et al. [15]	JW Plane Waves	Taylor	$\widetilde{\mathcal{O}}(1)$	$\widetilde{\mathcal{O}}(N^{2.67})$	$\widetilde{\mathcal{O}}(N^{2.67})$
2017	Babbush et al. [15]	JW Plane Waves	TASP	Variational	Variational	$\mathcal{O}(N)$

Typical chemistry problem workflow

Typical chemistry problem workflow

• An open source Python framework for quantum simulation on near term quantum hardware

Google

OpenFermion is an Apache 2 open source project for quantum simulation:

- Generate Hamiltonians for arbitrary molecules and materials in arbitrary basis sets
- Automatically compiles quantum algorithms to circuits for execution on hardware
- Google software engineering standards enforced; ~50K lines of code at 99.9% test coverage

OpenFermion is a community! Over two dozen contributors from over a dozen institutions

200 active (visible) forks

Framework and platform agnostic

- Works with Microsoft LIQUID, IBM QISKit, Google Cirq, Xanadu Strawberry, Rigetti Forest, etc.
- Runs on Linux, Mac, and Windows with optional Docker installation

Summarizing...

Bristlecone

Progress has been rapid in hardware and algorithms Even with a great device, will be challenging to get good simulations

Acknowledgements

Google

Zhang Jiang Ryan Babbush Nicolas Rubin Sergio Boixo Vadim Smelyanskiy Hartmut Neven

Daimler Tyler Takeshita

