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Bulk metallic glasses (BMGs)

• Solid material held together by metallic bonds with an amorphous
atomic-scale structure.

• Metallic bonds lead to dense packing unlike oxide glasses.
• Stronger than steel, with high strength to elasticity ratio.
• Can be processed and molded like a plastic.

• Applications limited by catastrophic failure mechanism: shear banding.

Crystalline structure

Amorphous structure
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Shear bands

• Shear band: rapid (ms) narrow (10 nm) localization of plastic deformation due to a strain-softening instability.
• Physics: Any theory of amorphous plasticity must be able to predict structure and formation of shear bands.
• Applications: Until shear bands are understood and controlled, BMGs cannot be used in practice.

Images taken from Schroers & Johnson, Phys. Rev. Let., 2004, 93, 255506
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Shear transformation zone theory of amorphous plasticity

• STZs: localized regions likely to undergo small-scale plastic rearrangements.

• Randomly distributed with Boltzmann density in an effective disorder temperature 𝜒.

• 𝜒 is measured in Kelvin, 𝜒 ∝ 𝜕(Config. Energy)
𝜕(Config. Entropy) , but distinct from usual kinetic/vibrational temperature 𝑇.

Images taken from K. Kamrin, E. Bouchbinder, J. Mech. Phys. Solids 73 (2014) 269-288 and Greer, Cheng, & Ma, Mat. Sci. Eng. R 74 (2013) 71-132.
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Continuum theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Truesdell Rate

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
hypo-elastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙𝑓(𝜎)⏟
∝ deviatoric

𝑑𝜒
𝑑𝑡⏟

Advective rate

=

Relaxation term
⏞⏞⏞⏞⏞⏞⏞𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒) + 𝑙2∇ ⋅ (𝐷𝑝𝑙∇𝜒)⏟⏟⏟⏟⏟⏟⏟
Diffusive term

𝐷pl ∝ (Density of STZs) × (Arrhenius barrier crossing)

× (Rates for forward and reverse transitions) × (1 −
𝑠𝑦

̄𝑠
)

× {
1 if local stress above yield stress
0 else
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The quasi-static and incompressible limits

Hypo-elastoplastic long-time limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
hypo-elastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible limit of Navier-Stokes

𝜌 𝑑v
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ v ≈ 0⏟⏟⏟⏟⏟
Incompressibility constraint

From Navier-Stokes to hypo-elastoplasticity

𝜎H.E.P. ⟺ vN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypo-elastoplasticity.
• This analogy is independent of the plasticity model.
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A quasi-static projection method

Hypo-elastoplastic equation

• Continuous-time:

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Semi-implicit Euler discretization:

𝜎𝑛+1 − 𝜎𝑛

Δ𝑡
= ( 𝐷𝜎

𝐷𝑡
)

𝑛
− (C ∶ Dpl)𝑛 + (C ∶ D)𝑛+1

Advection step

• Just drop the C ∶ D term!

𝜎∗ − 𝜎𝑛

Δ𝑡
= ( 𝐷𝜎

𝐷𝑡
)

𝑛
− (C ∶ Dpl)𝑛

• Parallelized using domain decomposition and MPI
(along with 𝜒 update).

• Solved on a staggered grid with 𝜎 and 𝜒 at cell
centers and u at cell corners.

Projection step

• 𝜎𝑛+1 can be computed from 𝜎∗ just by adding back
in the C ∶ D term.

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1

Linear system for the velocity

• Take divergence of the projection step:

∇ ⋅ 𝜎∗ = −Δ𝑡∇ ⋅ (C ∶ D𝑛+1)

• Solved using a custom C++ implementation of the
geometric multigrid method.

• Implementation is parallelized using MPI and
interfaces with the advection step.

• Optimal MPI decomposition computed at each level.

• C++ templates to solve for an arbitrary datatype at
each point in space - in this case, a 3-vector.
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Simulation methods for BMGs

Molecular Dynamics

• Physically exact up to integration errors and choice of
atomic potentials.

• Complete information about atomic structure and atomic
configurations.

• Computationally expensive!

• Typically employs Lees-Edwards boundary conditions.

Continuum-Scale

• Requires constitutive equations and a
phenomenological plasticity model.

• Fine-scale details have been coarse-grained into
internal model variables.

• Fast, scalable simulation.

• Typically employs parallel-plate boundary
conditions.

7
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Transformation methodology

• Reference or transformed domain with coordinate X.

• Physical, deformed domain with coordinate x.

• Linear time-dependent mapping T(𝑡) defines the physical
situation.

• Define the transformed velocity and stress:

V = T−1 (v − 𝜕T
𝜕𝑡 X)

Σ = T−1𝜎T−𝑇

Transformed Evolution Equations

𝜕Σ
𝜕𝑡

= − (V ⋅ ∇X) Σ − tr(L)Σ + Σ (TTLTT−T) + (T−1LT) Σ

+ T−1 (C ∶ (D − Dpl) − 𝜕T
𝜕𝑡

ΣTT − TΣ 𝜕TT

𝜕𝑡
) T−T.

𝜕V
𝜕𝑡

= − (V ⋅ ∇X) V + 𝜕T−1

𝜕𝑡
TV + T−1 (T−T∇X ⋅ (TΣTT) − 𝜕2T

𝜕𝑡2 X − 𝜕T
𝜕𝑡

V) .

8
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Quasi-static shear simulations

• 512 × 512 × 256 grid.

• ≈ 67, 000, 000 grid points in the bulk.

• Linear system matrix contains ≈ 67, 000, 0002

elements.

• Normally distributed initial 𝜒 field at each grid point
𝜒0(𝑖, 𝑗, 𝑘) ∼ 𝑁(𝜇, 𝜎).

• Basic projection: parallel plate boundary conditions:
specify 𝑢 = 𝑈𝑏 on top boundary and 𝑢 = −𝑈𝑏 on
bottom.

• ≈ 4 day simulation time with 32 threads.

Simple Shear

T(𝑡) = ⎛⎜⎜
⎝

1 0 𝑢𝑏𝑡
0 1 0
0 0 1

⎞⎟⎟
⎠

Pure Shear

T(𝑡) = ⎛⎜⎜
⎝

𝑒𝜁𝑡 0 0
0 1 0
0 0 𝑒−𝜁𝑡

⎞⎟⎟
⎠

N. M. Boffi & C. H. Rycroft. Parallel three-dimensional simulations of quasi-static elastoplastic solids. Part I: Numerical formulation and examples. 2019.
arXiv e-prints.
N. M. Boffi & C. H. Rycroft. Parallel three-dimensional simulations of quasi-static elastoplastic solids. Part II: Coordinate transformations. 2019. arXiv

e-prints. 9
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Conclusions, Future Directions, and Acknowledgments

• Metallic glasses are a promising class of materials limited by shear banding.
• Quasi-static projection algorithm enables simulation of large systems at long timescales by exploiting an
analogy to the incompressible Navier-Stokes equations.

• Transformation methodology enables connection between MD and continuum.
• Future directions:

• Extension of transformation methodology to state-dependent case for study of necking.
• Statistical matching between MD and continuum for prediction of effective temperature from MD configuration.
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