Reasoning about biology with data-driven approaches

Howes Scholar Presentation

Adam Riesselman

Reasoning about biology with data-driven approaches

Howes Scholar Presentation

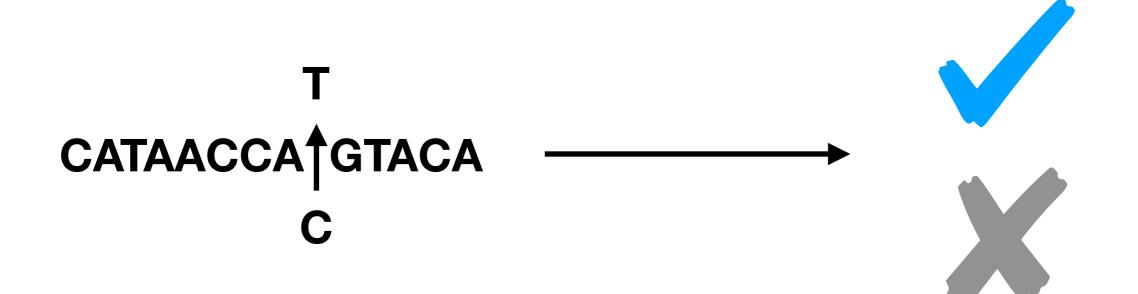
Adam Riesselman

DOE CSGF Fellow: Harvard University, 2014-2018

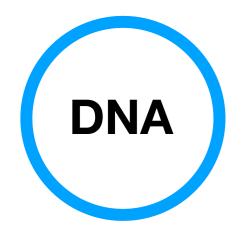
Practicum: Lawrence Berkeley National Lab (Joint Genome Institute), 2016

T CATAACCA[†]GTACA C

T CATAACCA∱GTACA → C





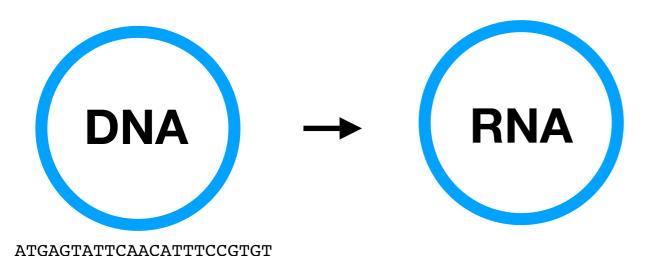


ATGAGTATTCAACATTTCCGTGT CGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCT CACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGG GTGCACGAGTGGGTTACATCGAA CTGGATCTCAACAGCGGTAAGAT

AACGTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCG GGCAAGAGCAACTCGGTCGCCGC

ATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAG AAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACA ACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAG...

4 different bases



CGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCT CACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGG GTGCACGAGTGGGTTACATCGAA CTGGATCTCAACAGCGGTAAGAT CCTTGAGAGTTTTCGCCCCGAAG AACGTTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCG GGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAG AAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACA ACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAG...

4 different bases

DNA → RNA

ATGAGTATTCAACATTTCCGTGT CGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCT CACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGG GTGCACGAGTGGGTTACATCGAA CTGGATCTCAACAGCGGTAAGAT CCTTGAGAGTTTTCGCCCCGAAG AACGTTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCG GGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAG AAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACA ACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAG...

AUGAGUAUUCAACAUUUCCGUGU CGCCCUUAUUCCCUUUUUUGCGG CAUUUUGCCUUCCUGUUUUUGCU CACCCAGAAACGCUGGUGAAAGU AAAAGAUGCUGAAGAUCAGUUGG GUGCACGAGUGGGUUACAUCGAA CUGGAUCUCAACAGCGGUAAGAU CCUUGAGAGUUUUCGCCCCGAAG AACGUUUUCCAAUGAUGAGCACU UUUAAAGUUCUGCUAUGUGGCGC GGUAUUAUCCCGUGUUGACGCCG GGCAAGAGCAACUCGGUCGCCGC AUACACUAUUCUCAGAAUGACUU GGUUGAGUACUCACCAGUCACAG AAAAGCAUCUUACGGAUGGCAUG ACAGUAAGAGAAUUAUGCAGUGC UGCCAUAACCAUGAGUGAUAACA CUGCGGCCAACUUACUUCUGACA ACGAUCGGAGGACCGAAGGAGCU AACCGCUUUUUUGCACAACAUGG GGGAUCAUGUAACUCGCCUUGAU CGUUGGGAACCGGAGCUGAAUGA AGCCAUACCAAACGACGAG...

4 different bases

ATGAGTATTCAACATTTCCGTGT CGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCT CACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGG GTGCACGAGTGGGTTACATCGAA CTGGATCTCAACAGCGGTAAGAT CCTTGAGAGTTTTCGCCCCGAAG AACGTTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCG GGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAG AAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACA ACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAG...

DNA

AUGAGUAUUCAACAUUUCCGUGU CGCCCUUAUUCCCUUUUUUGCGG CAUUUUGCCUUCCUGUUUUUGCU CACCCAGAAACGCUGGUGAAAGU AAAAGAUGCUGAAGAUCAGUUGG GUGCACGAGUGGGUUACAUCGAA CUGGAUCUCAACAGCGGUAAGAU CCUUGAGAGUUUUCGCCCCGAAG AACGUUUUCCAAUGAUGAGCACU UUUAAAGUUCUGCUAUGUGGCGC GGUAUUAUCCCGUGUUGACGCCG GGCAAGAGCAACUCGGUCGCCGC AUACACUAUUCUCAGAAUGACUU GGUUGAGUACUCACCAGUCACAG AAAAGCAUCUUACGGAUGGCAUG ACAGUAAGAGAAUUAUGCAGUGC UGCCAUAACCAUGAGUGAUAACA CUGCGGCCAACUUACUUCUGACA ACGAUCGGAGGACCGAAGGAGCU AACCGCUUUUUUGCACAACAUGG GGGAUCAUGUAACUCGCCUUGAU CGUUGGGAACCGGAGCUGAAUGA AGCCAUACCAAACGACGAG...

RNA

Protein

4 different bases

ATGAGTATTCAACATTTCCGTGT CGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCT CACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGG GTGCACGAGTGGGTTACATCGAA CTGGATCTCAACAGCGGTAAGAT CCTTGAGAGTTTTCGCCCCGAAG AACGTTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCG GGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAG AAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACA ACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAG...

DNA

AUGAGUAUUCAACAUUUCCGUGU CGCCCUUAUUCCCUUUUUUGCGG CAUUUUGCCUUCCUGUUUUUGCU CACCCAGAAACGCUGGUGAAAGU AAAAGAUGCUGAAGAUCAGUUGG GUGCACGAGUGGGUUACAUCGAA CUGGAUCUCAACAGCGGUAAGAU CCUUGAGAGUUUUCGCCCCGAAG AACGUUUUCCAAUGAUGAGCACU UUUAAAGUUCUGCUAUGUGGCGC GGUAUUAUCCCGUGUUGACGCCG GGCAAGAGCAACUCGGUCGCCGC AUACACUAUUCUCAGAAUGACUU GGUUGAGUACUCACCAGUCACAG AAAAGCAUCUUACGGAUGGCAUG ACAGUAAGAGAAUUAUGCAGUGC UGCCAUAACCAUGAGUGAUAACA CUGCGGCCAACUUACUUCUGACA ACGAUCGGAGGACCGAAGGAGCU AACCGCUUUUUUGCACAACAUGG GGGAUCAUGUAACUCGCCUUGAU CGUUGGGAACCGGAGCUGAAUGA AGCCAUACCAAACGACGAG...

RNA

MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVAGPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

Protein

20 different amino acids

ATGAGTATTCAACATTTCCGTGT CGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCT CACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGG GTGCACGAGTGGGTTACATCGAA CTGGATCTCAACAGCGGTAAGAT CCTTGAGAGTTTTCGCCCCGAAG AACGTTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCG GGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAG AAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACA ACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAG...

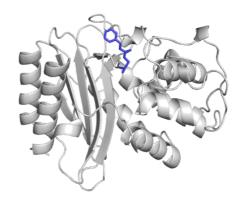
DNA

AUGAGUAUUCAACAUUUCCGUGU CGCCCUUAUUCCCUUUUUUGCGG CAUUUUGCCUUCCUGUUUUUGCU CACCCAGAAACGCUGGUGAAAGU AAAAGAUGCUGAAGAUCAGUUGG GUGCACGAGUGGGUUACAUCGAA CUGGAUCUCAACAGCGGUAAGAU CCUUGAGAGUUUUCGCCCCGAAG AACGUUUUCCAAUGAUGAGCACU UUUAAAGUUCUGCUAUGUGGCGC GGUAUUAUCCCGUGUUGACGCCG GGCAAGAGCAACUCGGUCGCCGC AUACACUAUUCUCAGAAUGACUU GGUUGAGUACUCACCAGUCACAG AAAAGCAUCUUACGGAUGGCAUG ACAGUAAGAGAAUUAUGCAGUGC UGCCAUAACCAUGAGUGAUAACA CUGCGGCCAACUUACUUCUGACA ACGAUCGGAGGACCGAAGGAGCU AACCGCUUUUUUGCACAACAUGG GGGAUCAUGUAACUCGCCUUGAU CGUUGGGAACCGGAGCUGAAUGA AGCCAUACCAAACGACGAG...

RNA

MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVAGPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

Protein



20 different amino acids

RNA

ATGAGTATTCAACATTTCCGTGT CGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCT CACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGG GTGCACGAGTGGGTTACATCGAA CTGGATCTCAACAGCGGTAAGAT CCTTGAGAGTTTTCGCCCCGAAG AACGTTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCG GGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAG AAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACA ACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAG...

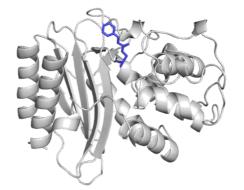
DNA

AUGAGUAUUCAACAUUUCCGUGU CGCCCUUAUUCCCUUUUUUGCGG CAUUUUGCCUUCCUGUUUUUGCU CACCCAGAAACGCUGGUGAAAGU AAAAGAUGCUGAAGAUCAGUUGG GUGCACGAGUGGGUUACAUCGAA CUGGAUCUCAACAGCGGUAAGAU CCUUGAGAGUUUUCGCCCCGAAG AACGUUUUCCAAUGAUGAGCACU UUUAAAGUUCUGCUAUGUGGCGC GGUAUUAUCCCGUGUUGACGCCG GGCAAGAGCAACUCGGUCGCCGC AUACACUAUUCUCAGAAUGACUU GGUUGAGUACUCACCAGUCACAG AAAAGCAUCUUACGGAUGGCAUG ACAGUAAGAGAAUUAUGCAGUGC UGCCAUAACCAUGAGUGAUAACA CUGCGGCCAACUUACUUCUGACA ACGAUCGGAGGACCGAAGGAGCU AACCGCUUUUUUGCACAACAUGG GGGAUCAUGUAACUCGCCUUGAU CGUUGGGAACCGGAGCUGAAUGA AGCCAUACCAAACGACGAG...

Protein

Function

MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVAGPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW



 \rightarrow

ATGAGTATTCAACATTTCCGTGT CGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCT CACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGG GTGCACGAGTGGGTTACATCGAA CTGGATCTCAACAGCGGTAAGAT CCTTGAGAGTTTTCGCCCCGAAG AACGTTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCG GGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAG AAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACA ACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAG...

DNA

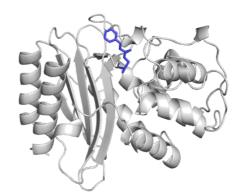
AUGAGUAUUCAACAUUUCCGUGU CGCCCUUAUUCCCUUUUUUGCGG CAUUUUGCCUUCCUGUUUUUGCU CACCCAGAAACGCUGGUGAAAGU AAAAGAUGCUGAAGAUCAGUUGG GUGCACGAGUGGGUUACAUCGAA CUGGAUCUCAACAGCGGUAAGAU CCUUGAGAGUUUUCGCCCCGAAG AACGUUUUCCAAUGAUGAGCACU UUUAAAGUUCUGCUAUGUGGCGC GGUAUUAUCCCGUGUUGACGCCG GGCAAGAGCAACUCGGUCGCCGC AUACACUAUUCUCAGAAUGACUU GGUUGAGUACUCACCAGUCACAG AAAAGCAUCUUACGGAUGGCAUG ACAGUAAGAGAAUUAUGCAGUGC UGCCAUAACCAUGAGUGAUAACA CUGCGGCCAACUUACUUCUGACA ACGAUCGGAGGACCGAAGGAGCU AACCGCUUUUUUGCACAACAUGG GGGAUCAUGUAACUCGCCUUGAU CGUUGGGAACCGGAGCUGAAUGA AGCCAUACCAAACGACGAG...

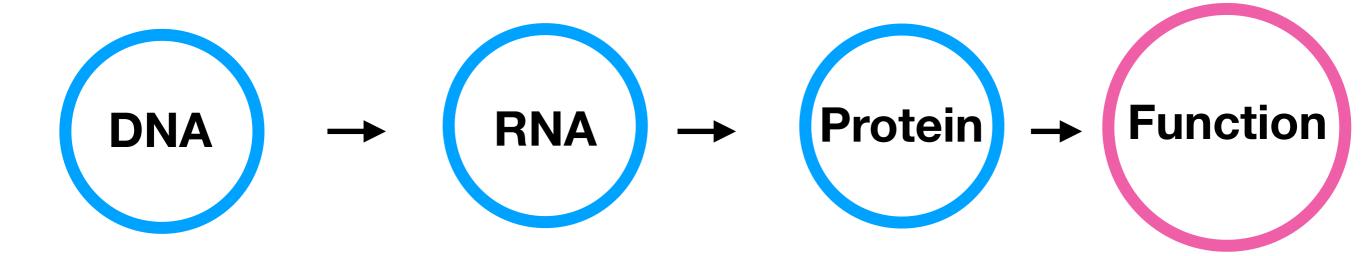
RNA

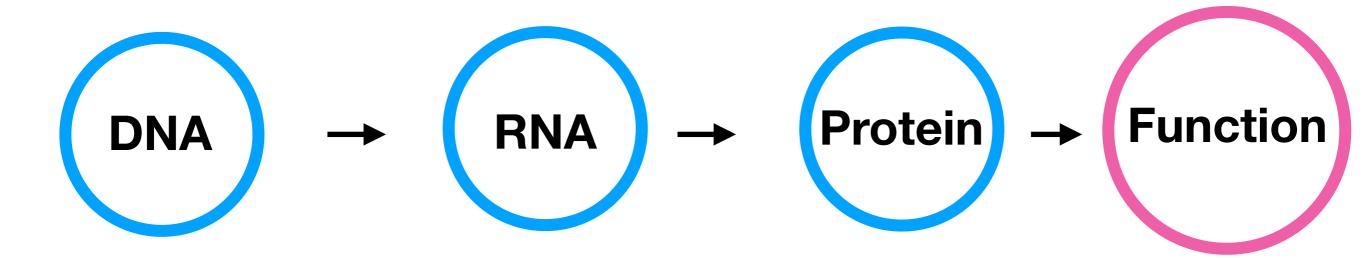
Protein

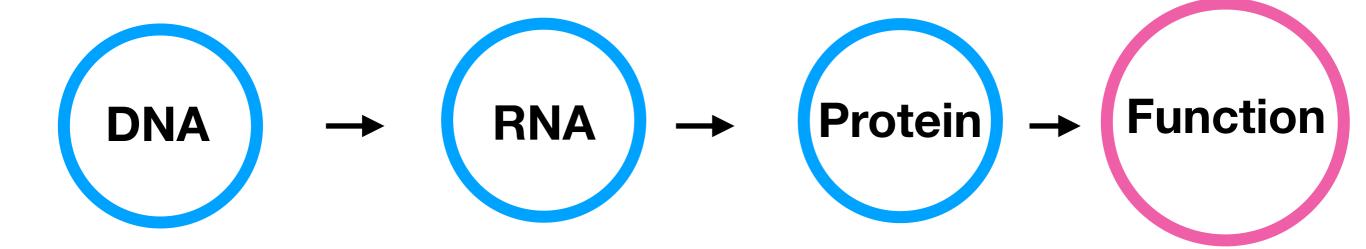
Function

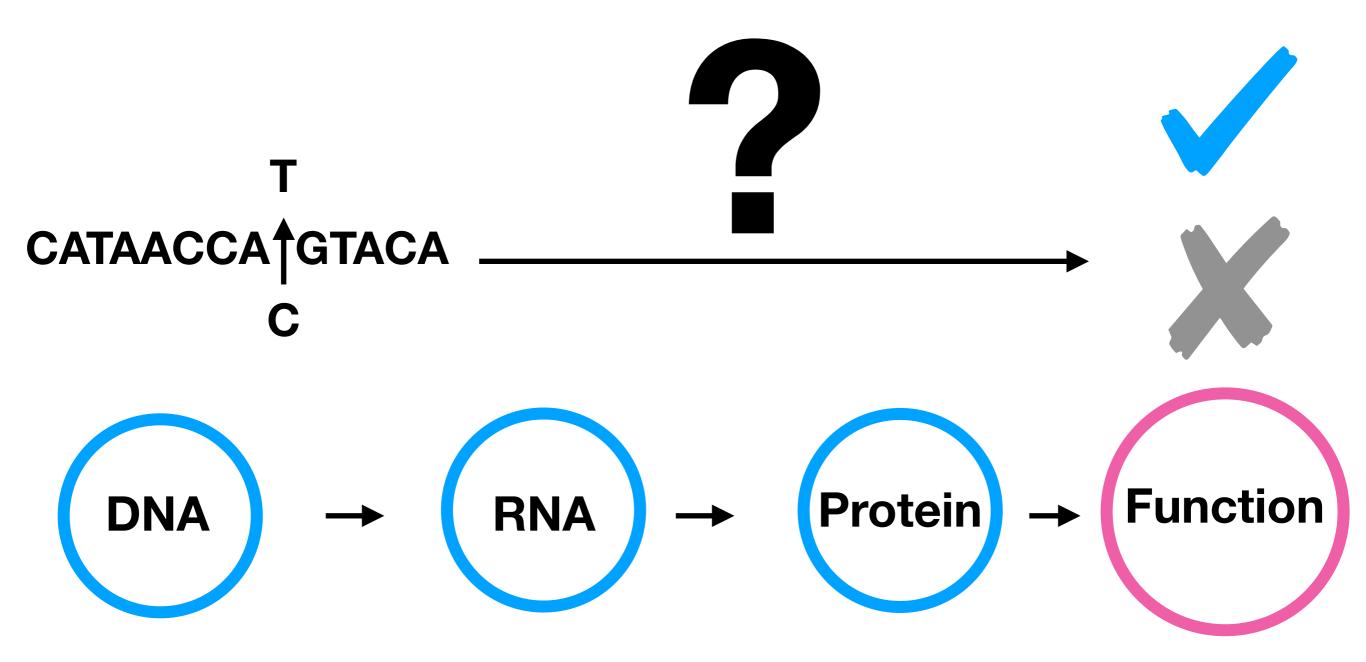
MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVAGPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

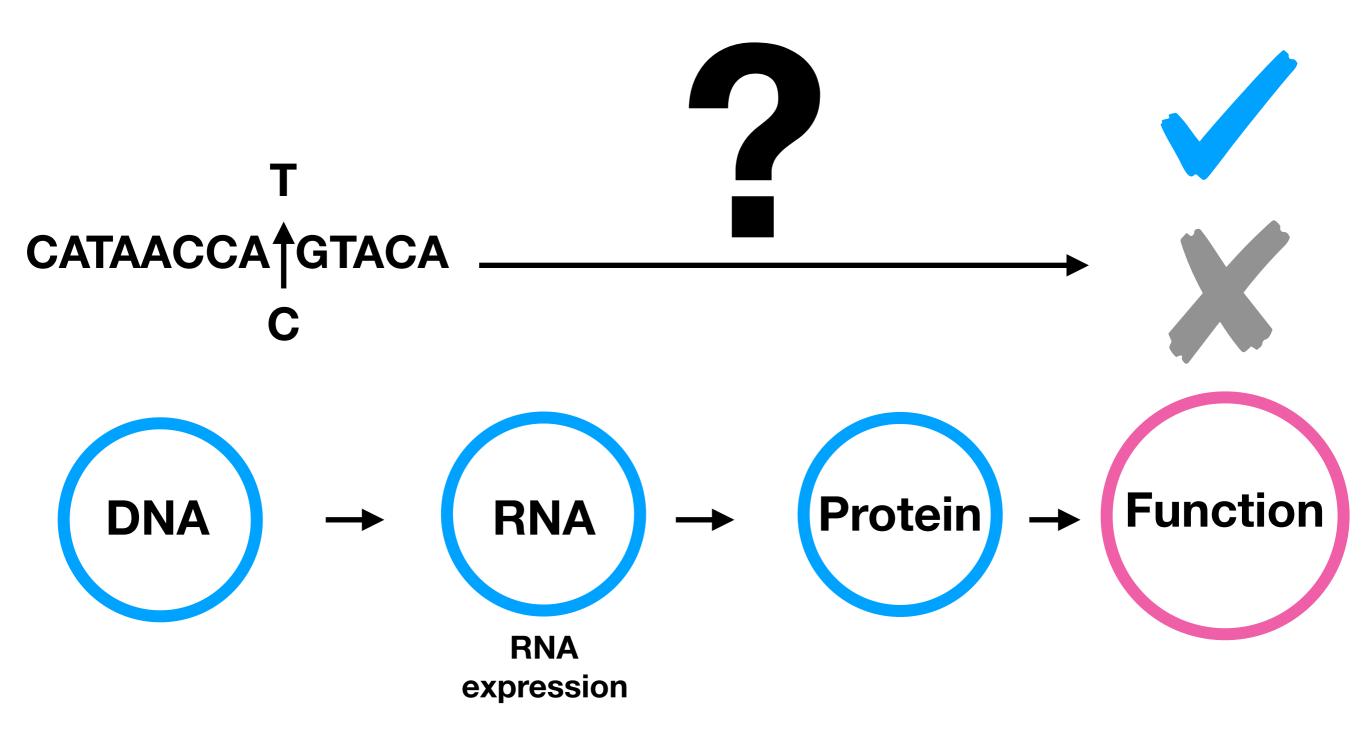


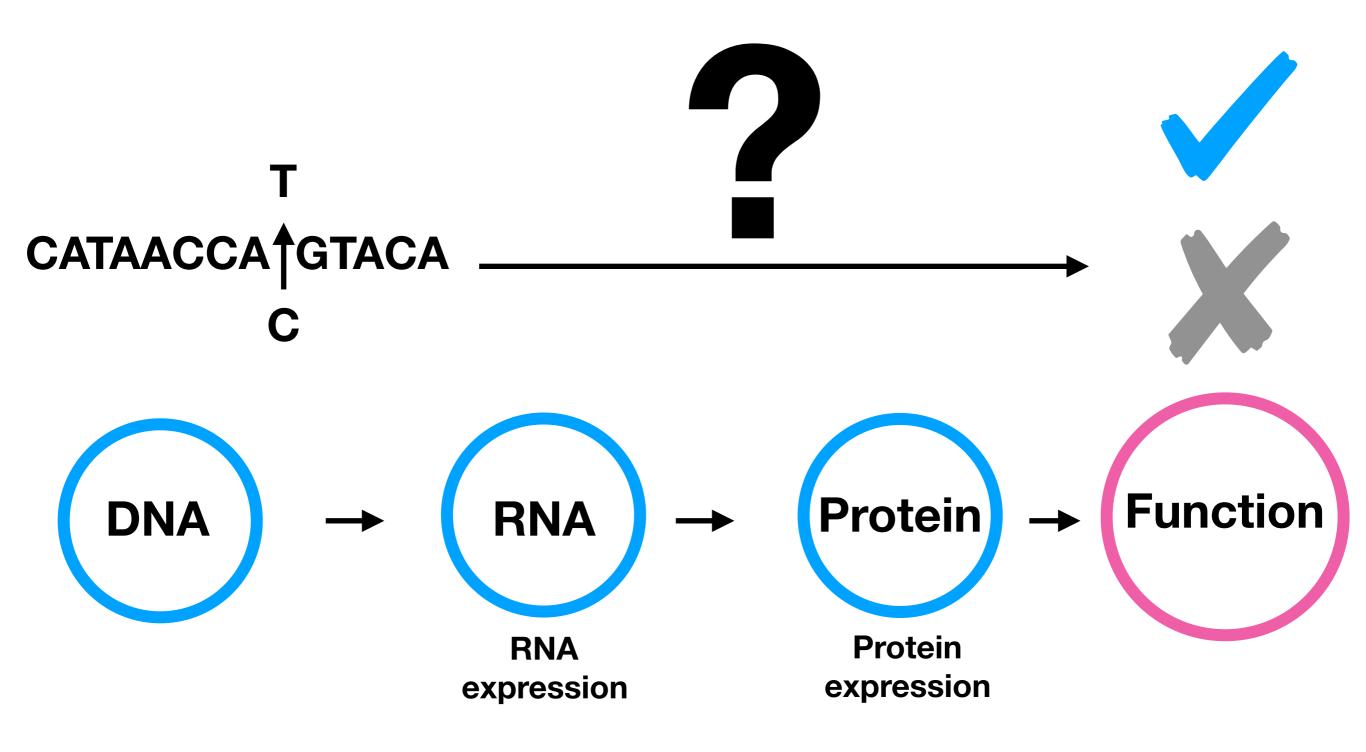


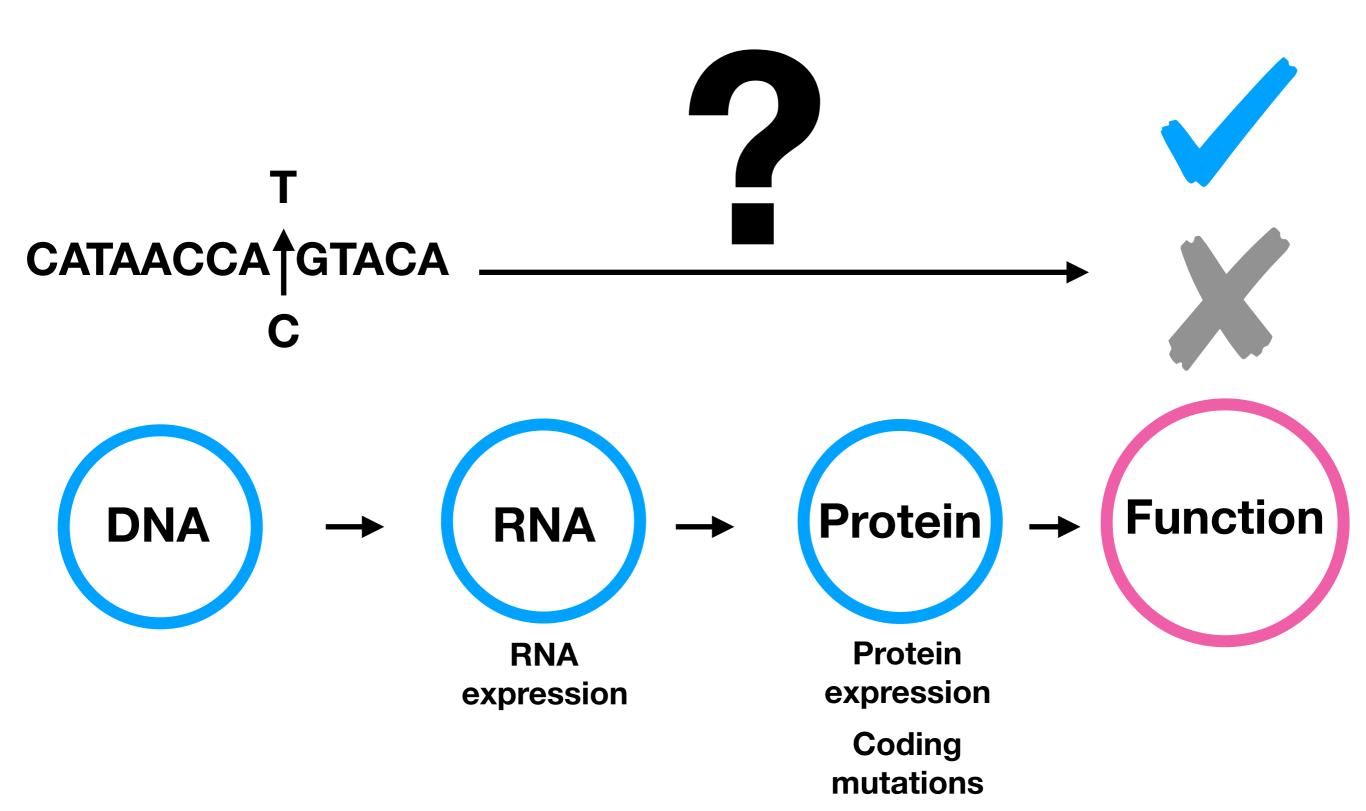












Understanding disease

"Does this mutation cause cancer?"

Understanding disease

Biomedicine

"Does this mutation cause cancer?"

"Is this antibody stable in a patient?"

Understanding disease

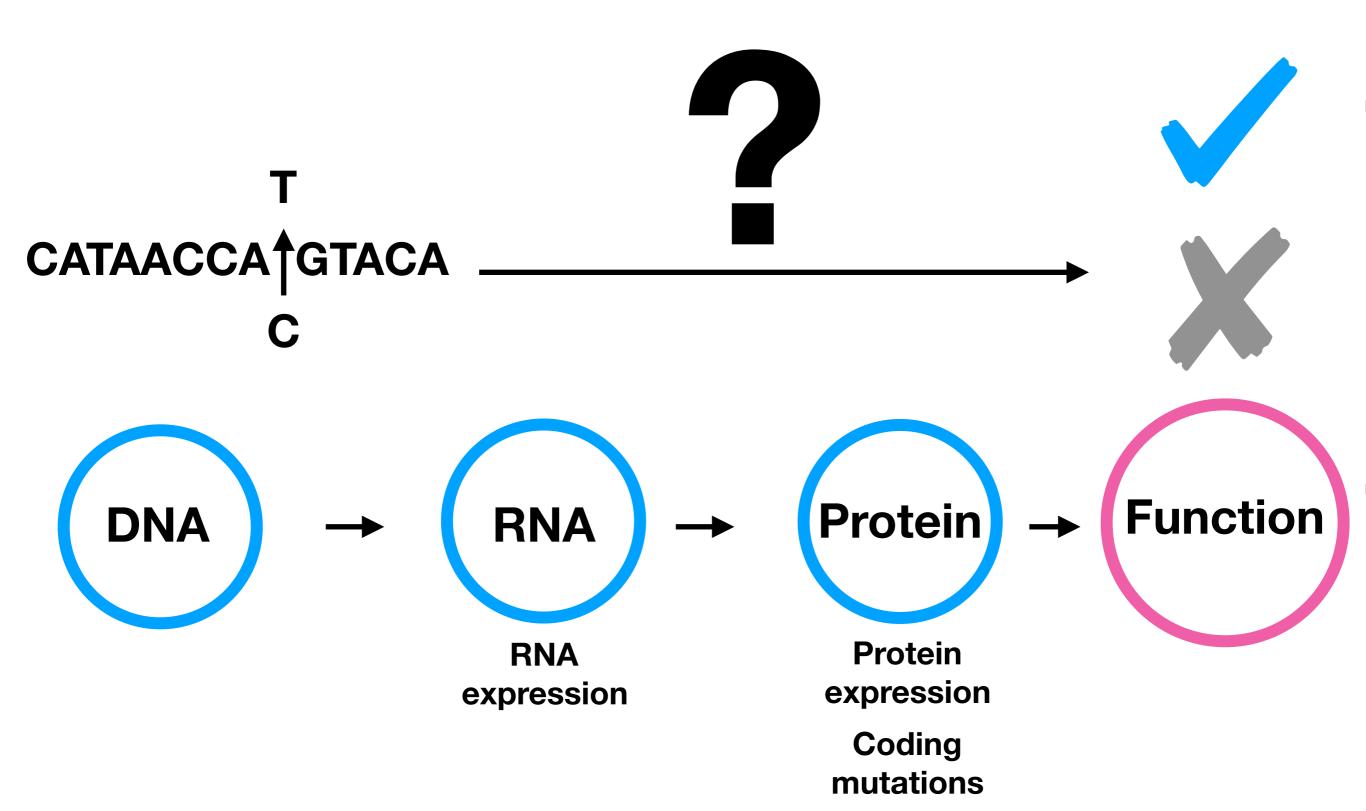
Biomedicine

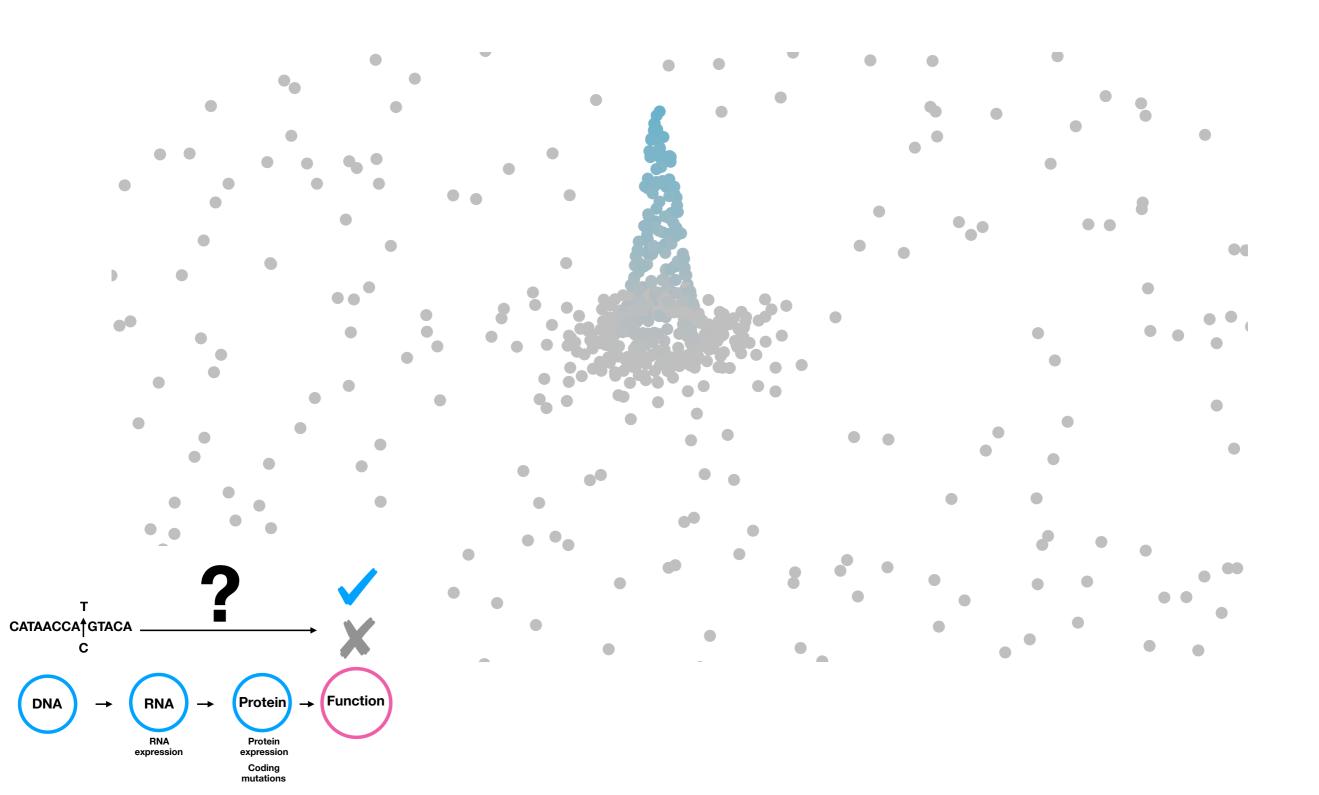
Bioengineering

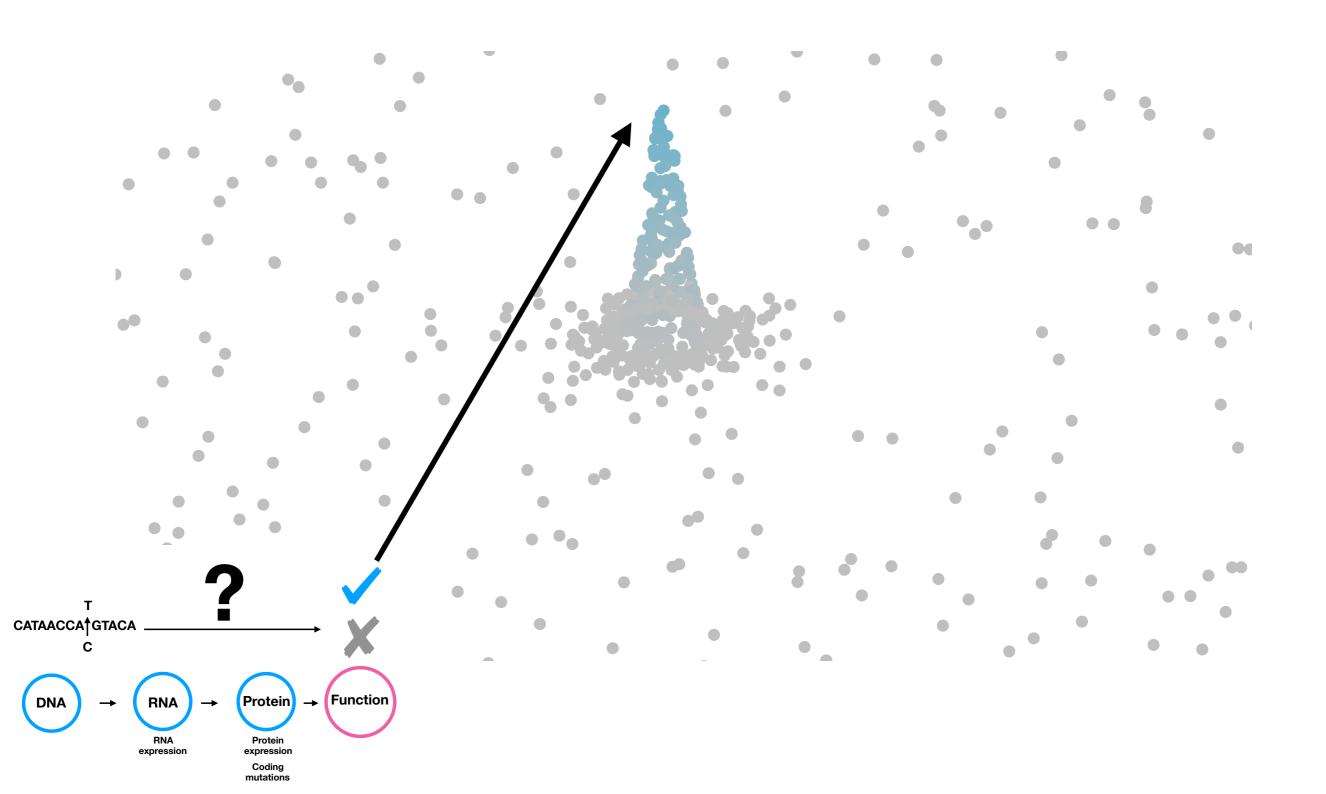
"Does this mutation cause cancer?"

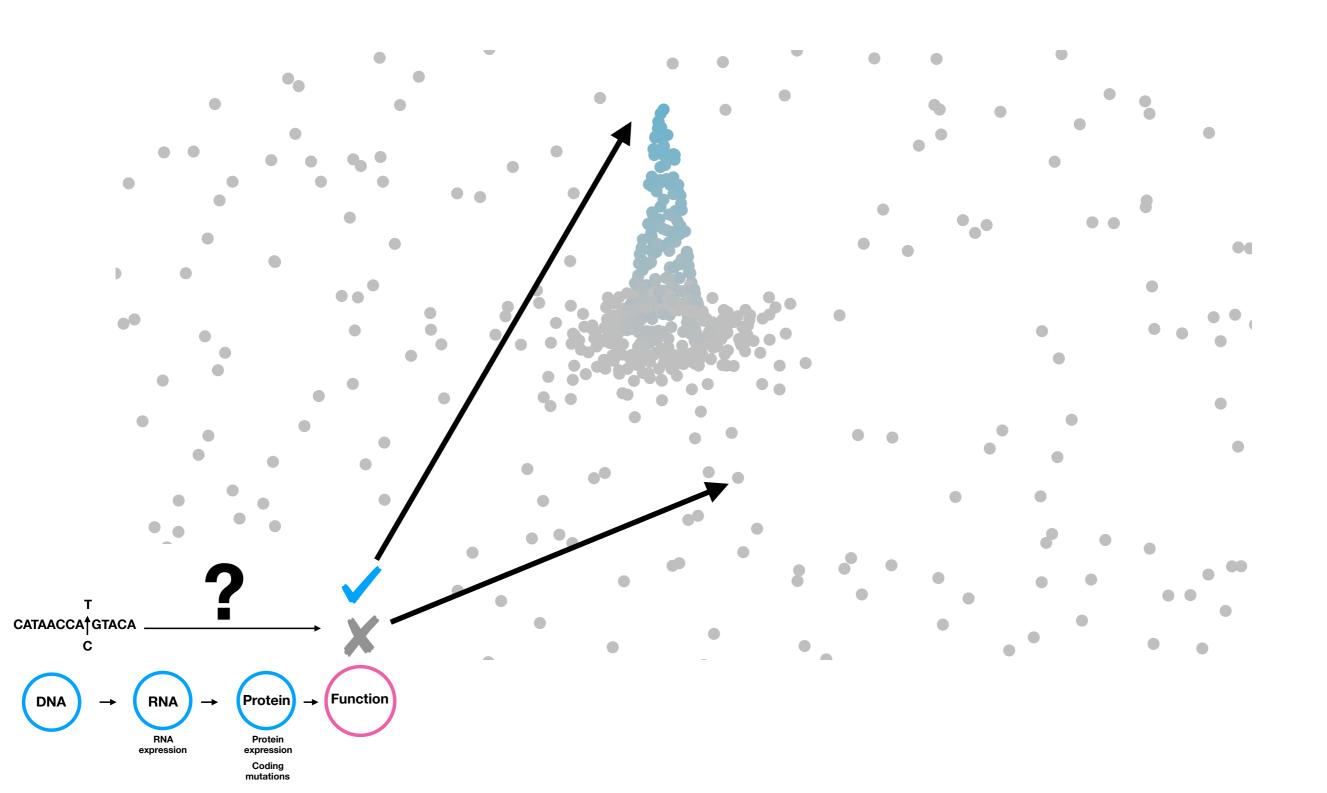
"Is this antibody stable in a patient?"

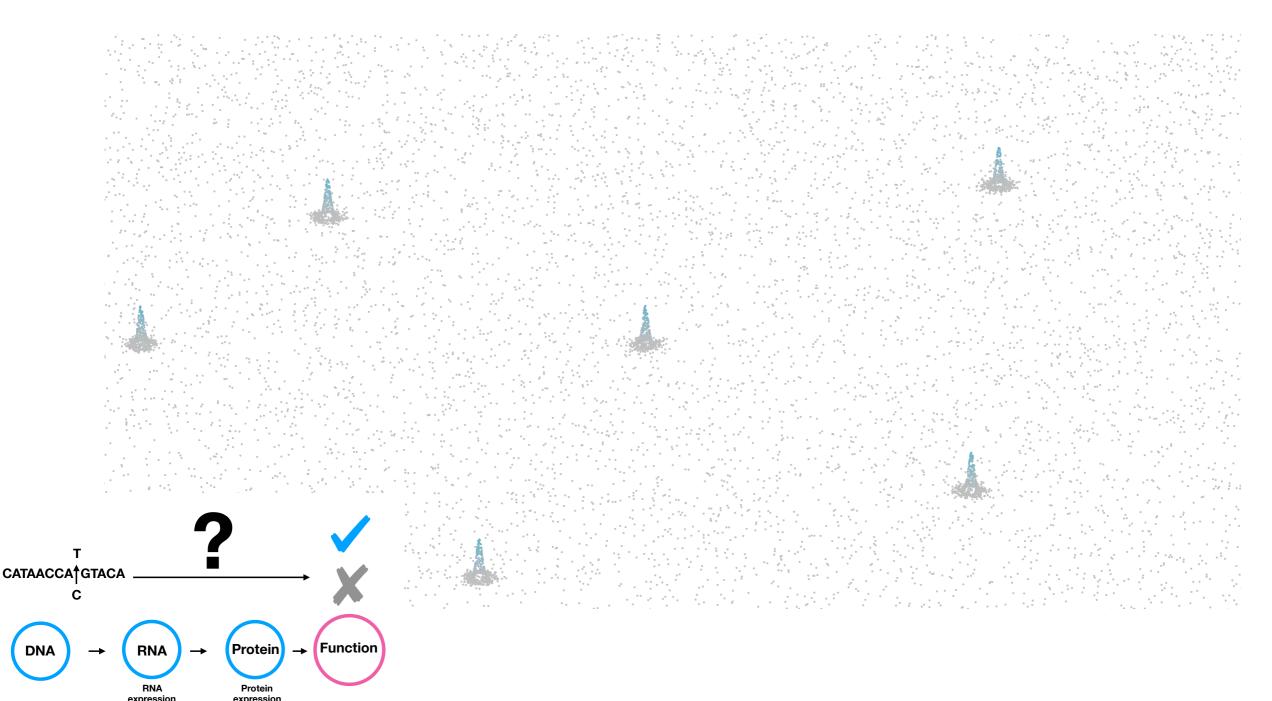
"Can this microbe be used to create vitamins?"





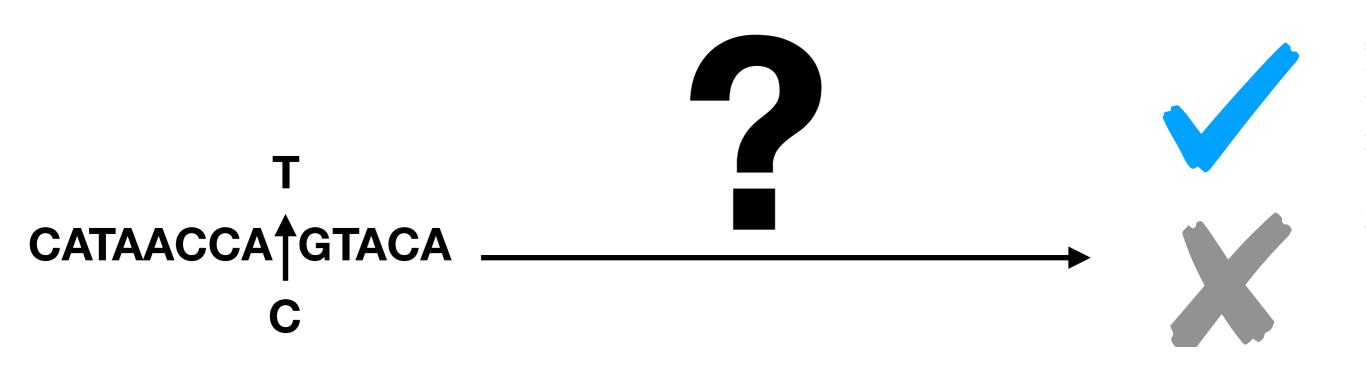




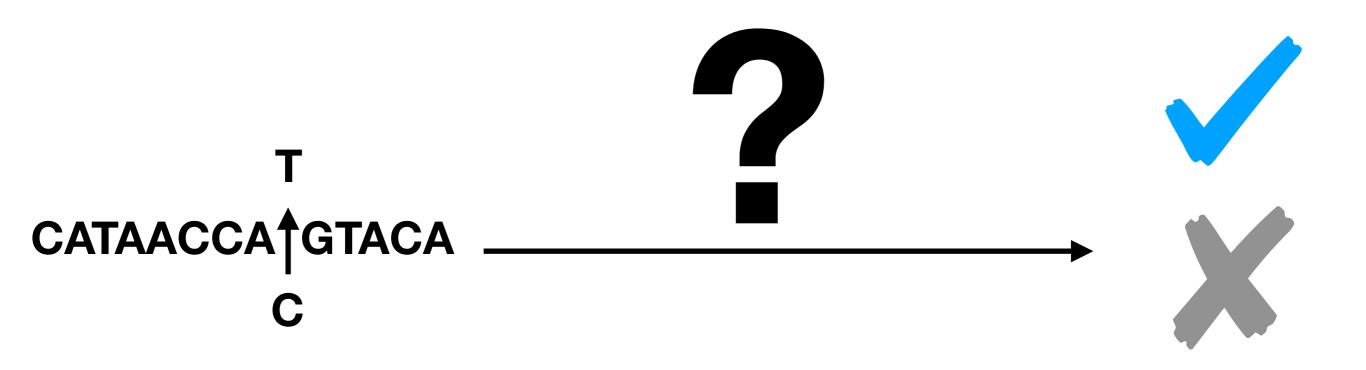


expression

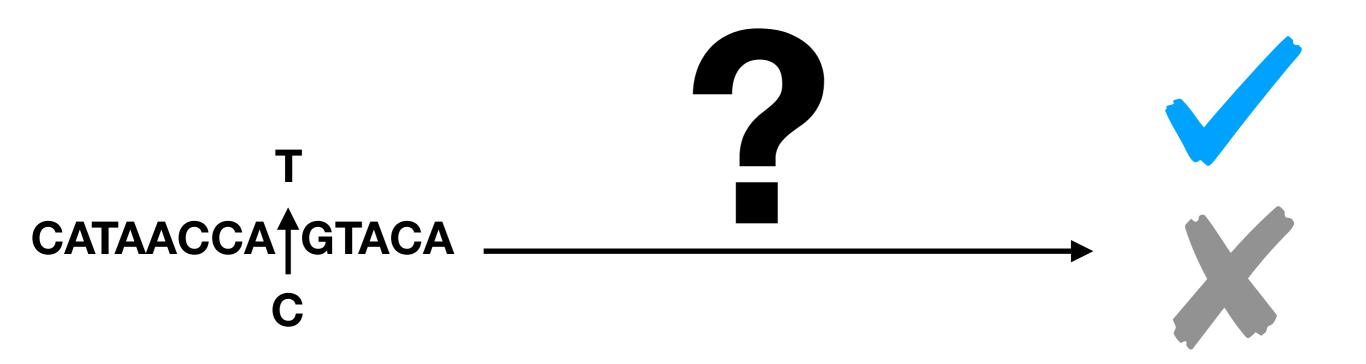
Coding mutations



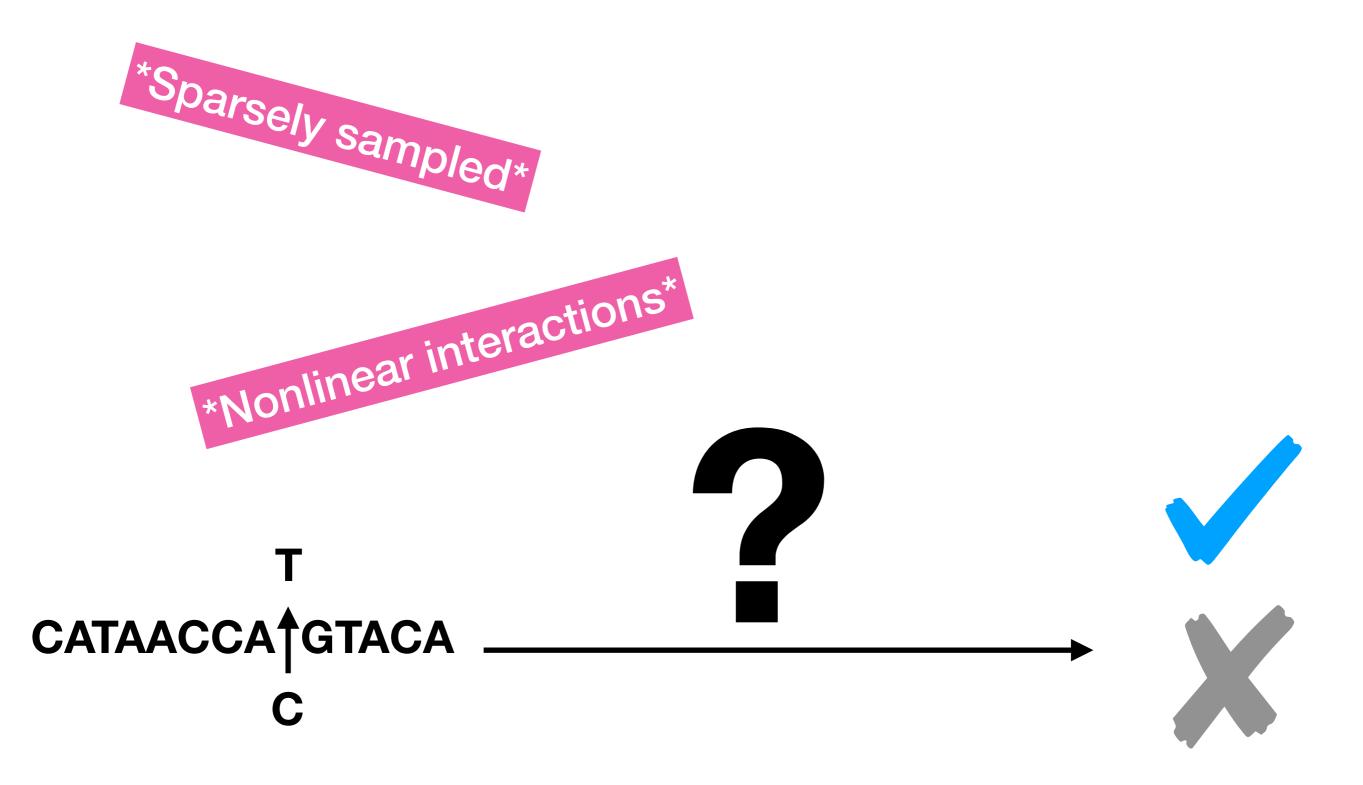
Mutation effect prediction is hard



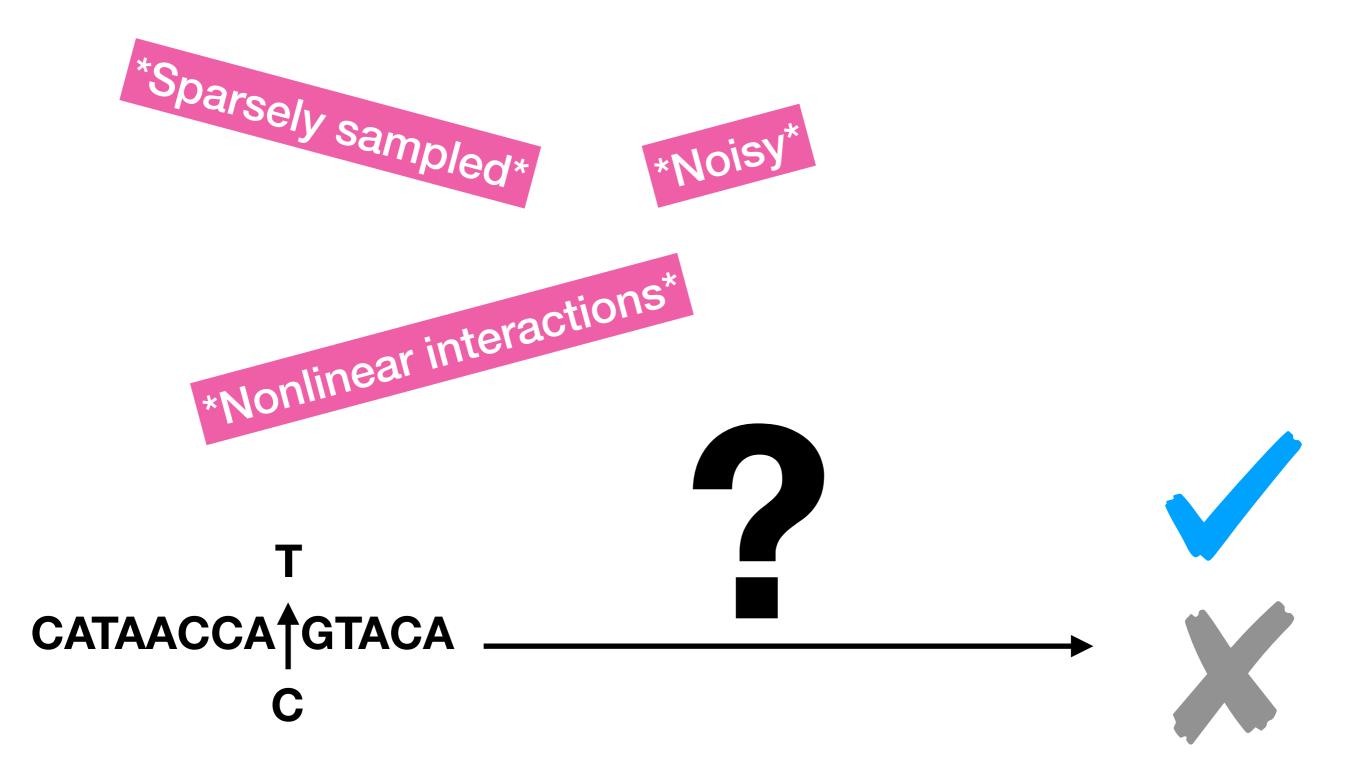
Mutation effect prediction is hard



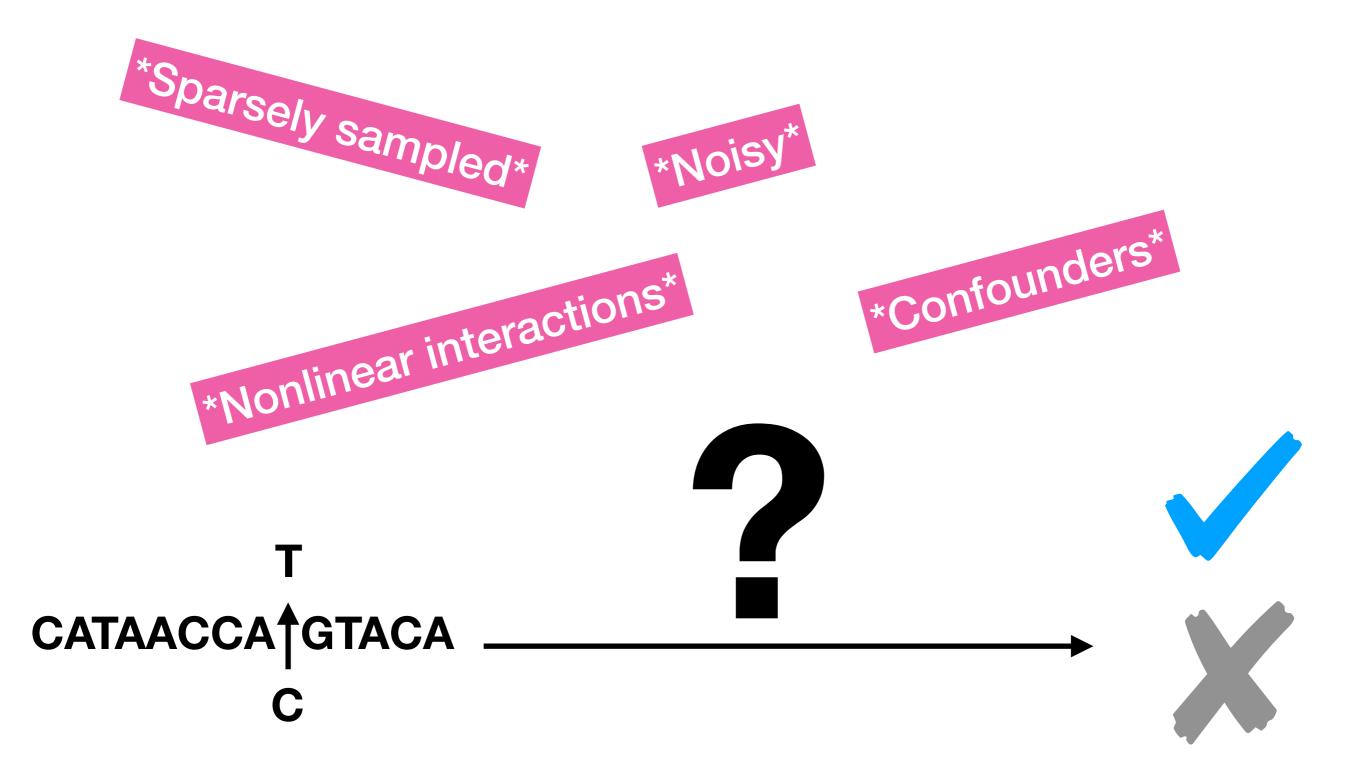
Mutation effect prediction is hard

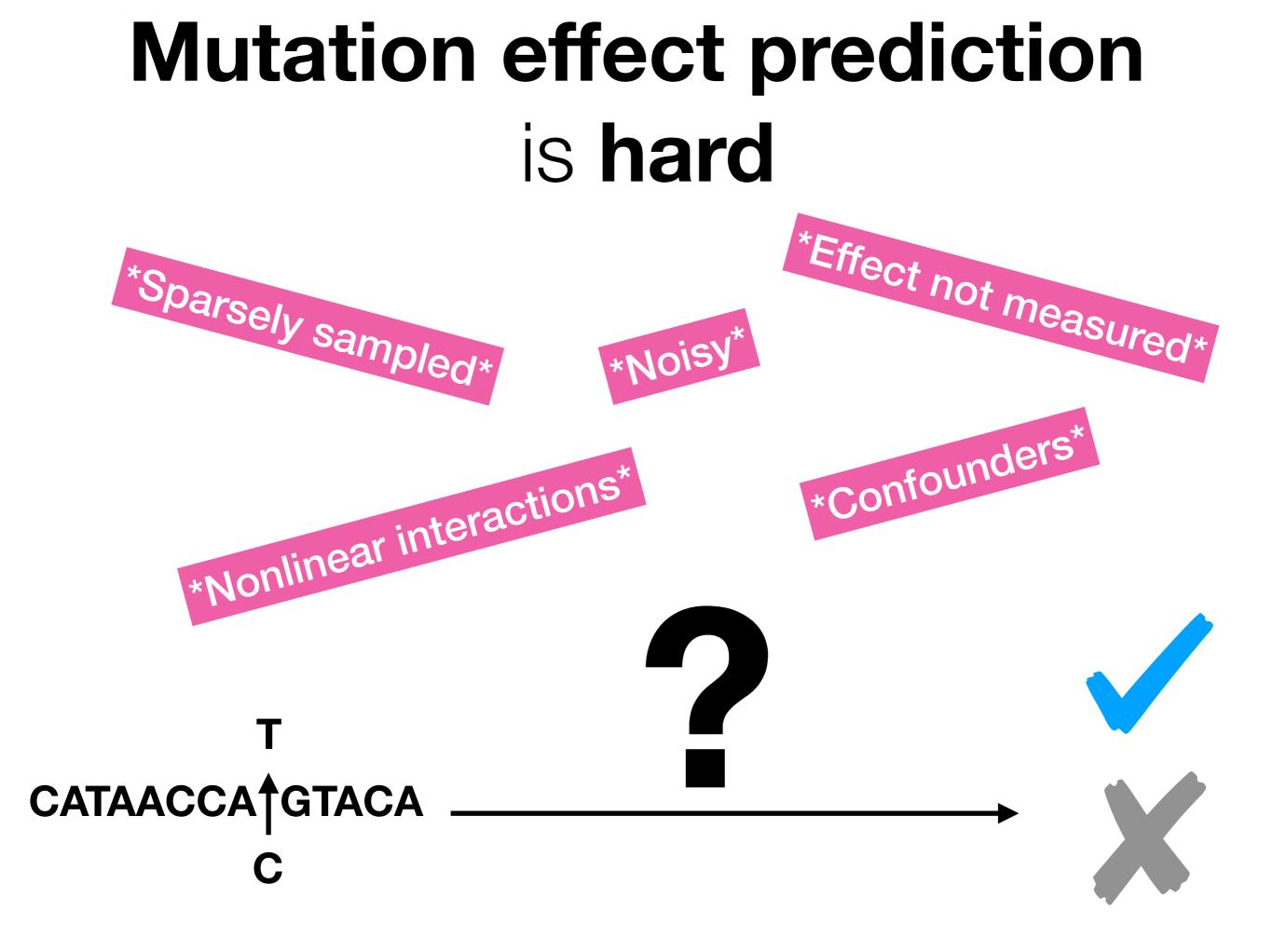


Mutation effect prediction is hard



Mutation effect prediction is hard





Part I: Genotype -> Phenotype in proteins

Part I: Genotype -> Phenotype in proteins

DNA

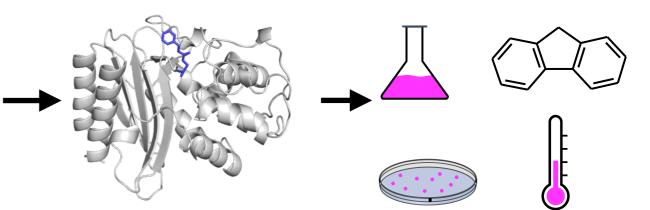
ATGAGTATTCAACATTTCCGTGT CGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCT CACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGG GTGCACGAGTGGGTTACATCGAA CTGGATCTCAACAGCGGTAAGAT CCTTGAGAGTTTTCGCCCCGAAG AACGTTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCG GGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAG AAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACA ACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAG...

Protein

MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVAGPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

RNA

Structure Function



Part I: Genotype -> Phenotype in proteins

DNA

ATGAGTATTCAACATTTCCGTGT CGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCT CACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGG GTGCACGAGTGGGTTACATCGAA CTGGATCTCAACAGCGGTAAGAT CCTTGAGAGTTTTCGCCCCGAAG AACGTTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCG GGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAG AAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACA ACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAG...

R

Α

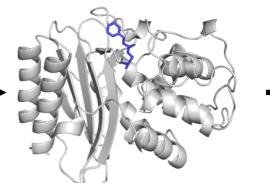
Protein

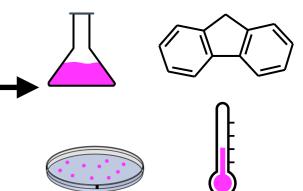
in diania and 2

MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVAGPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

A second s

Structure Function

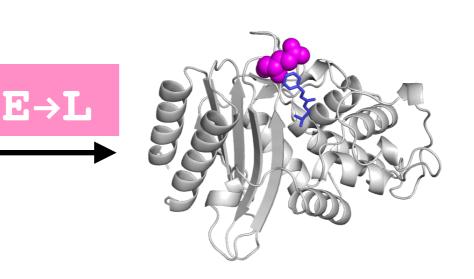




MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVAGPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

Sequence

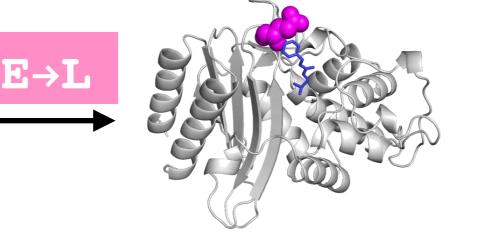
MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW



Sequence

Structure

MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACELLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW



Sequence

Structure

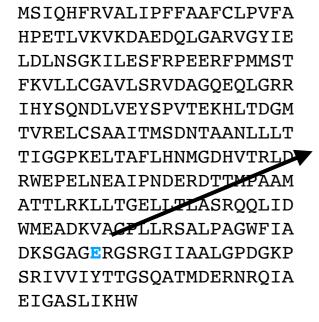
MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

E→L

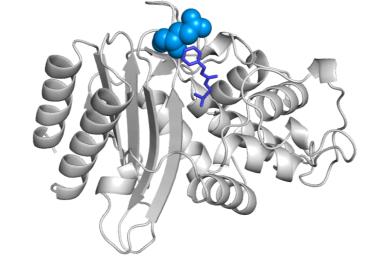


MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

E→L



Sequence

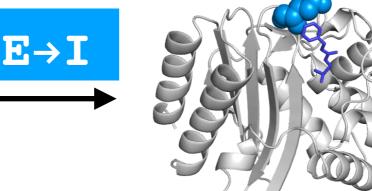


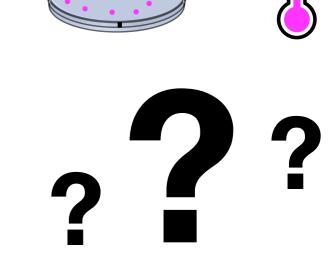
Structure

MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

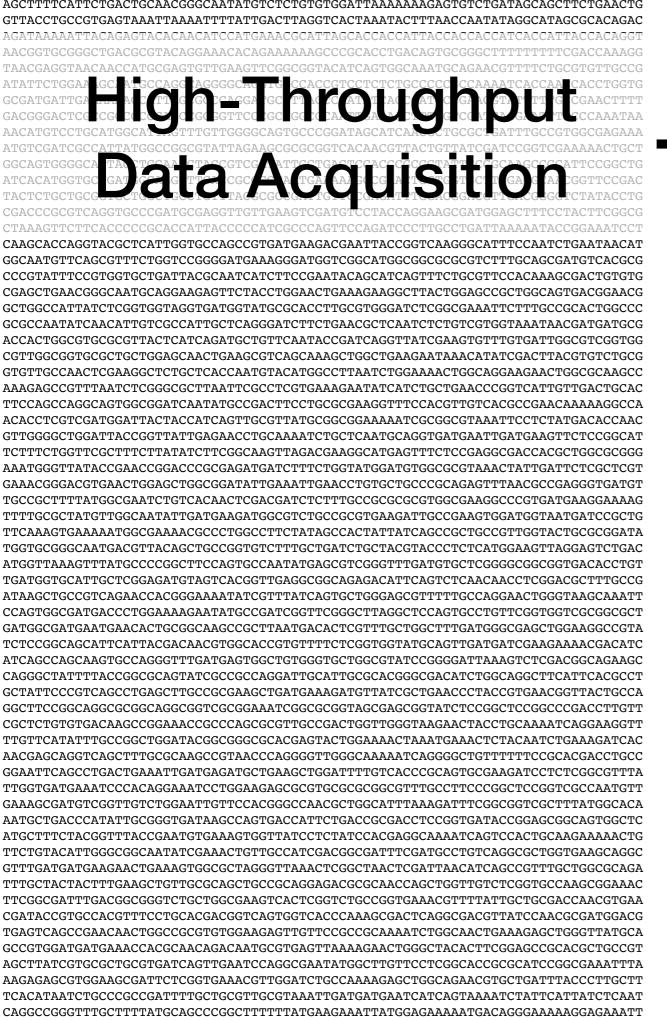
E→L

MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACFLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW





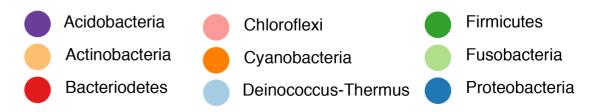
Structure



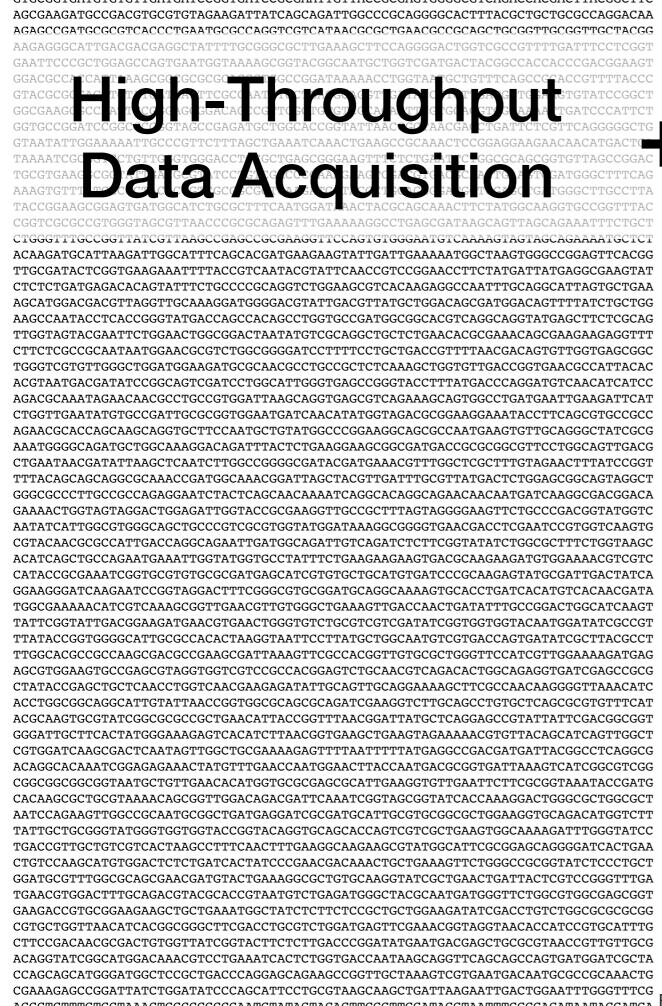
Machine Learning

Update 10

β-lactamase sequence family



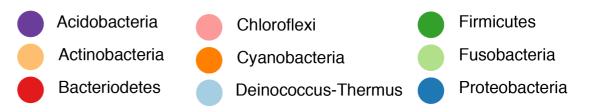
Riesselman, A.J.*, Ingraham, J.B.* and Marks, D.S., 2018. Nat. Methods, 15, pp.816-822.



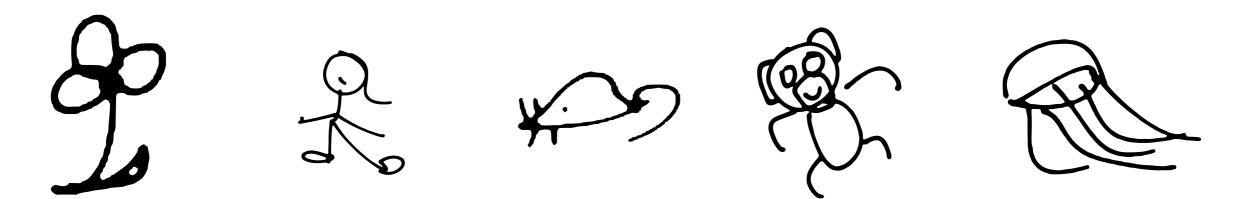
Machine Learning

Update 10

β-lactamase sequence family



AGGCTCTTTGTGCTAAACTGGCCCGCCGAATGTATAGTACACTTCGGTTGGATAGGTAATTTGGCGAGATAATACGATGA Riesselman, A.J.*, Ingraham, J.B.* and Marks, D.S., 2018. Nat. Methods, 15, pp.816-822.

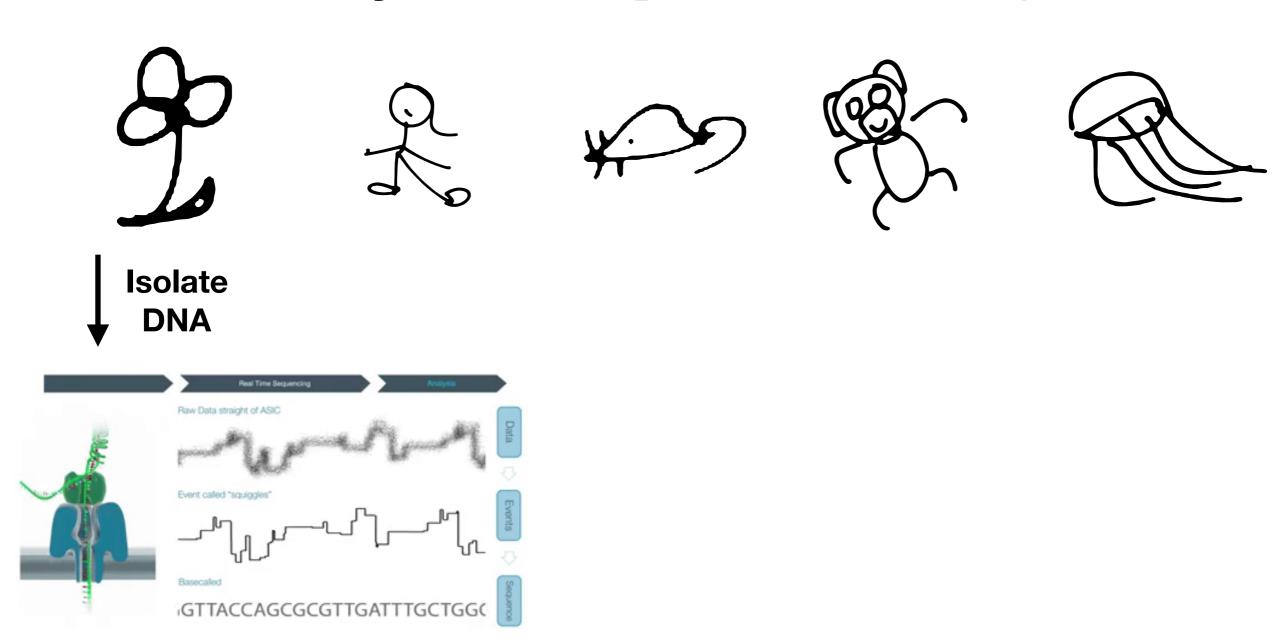


https://www.uniprot.org/statistics/TrEMBL

https://www.youtube.com/watch?v=GUb1TZvMWsw

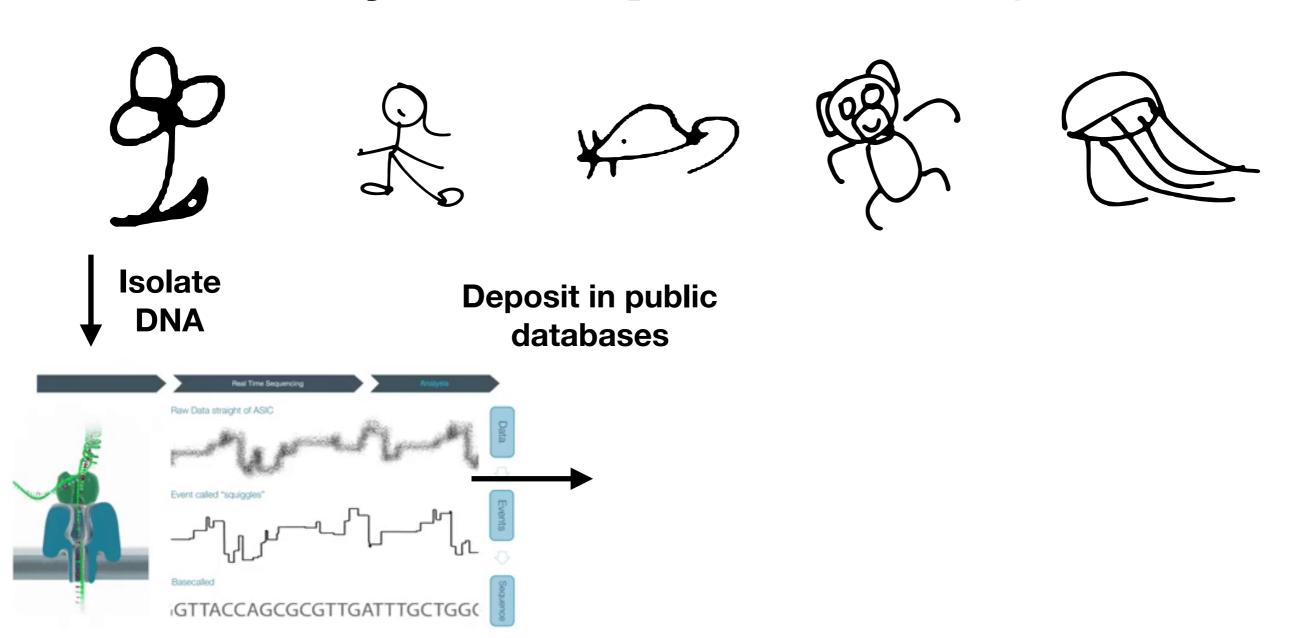
https://www.uniprot.org/statistics/TrEMBL

https://www.youtube.com/watch?v=GUb1TZvMWsw

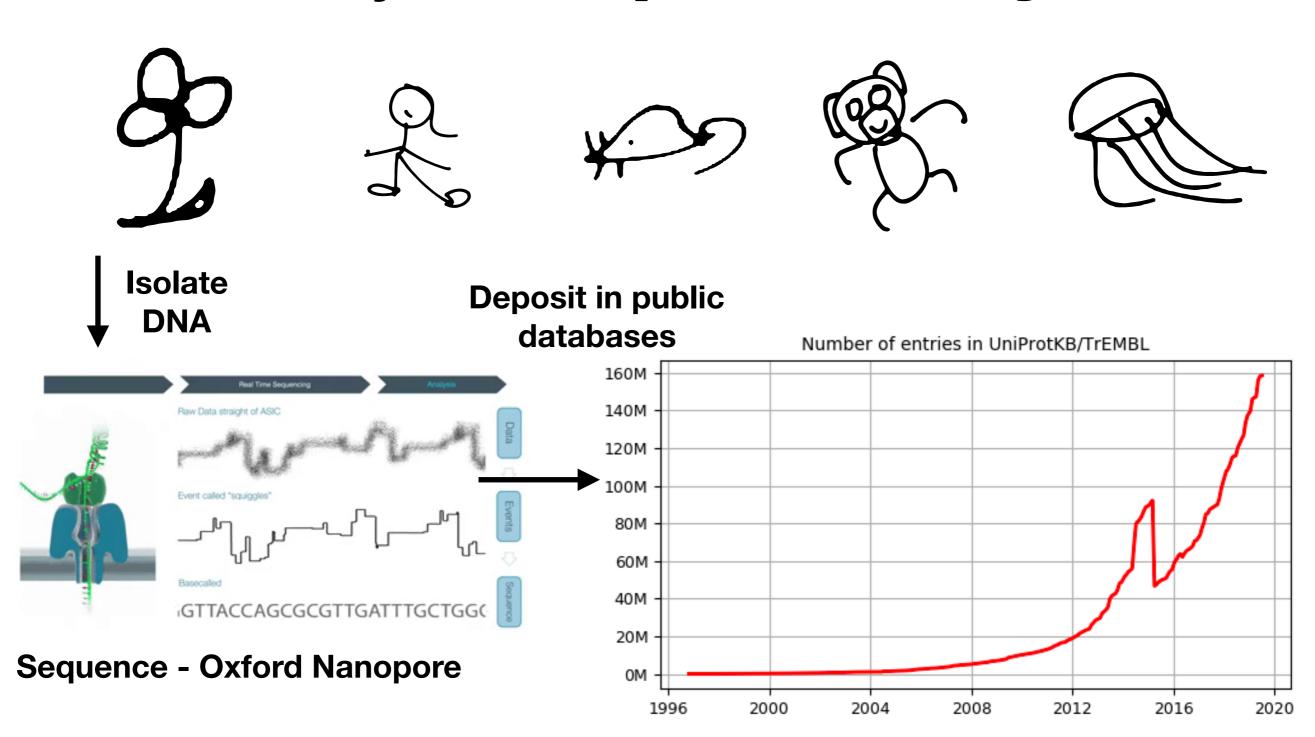


Sequence - Oxford Nanopore

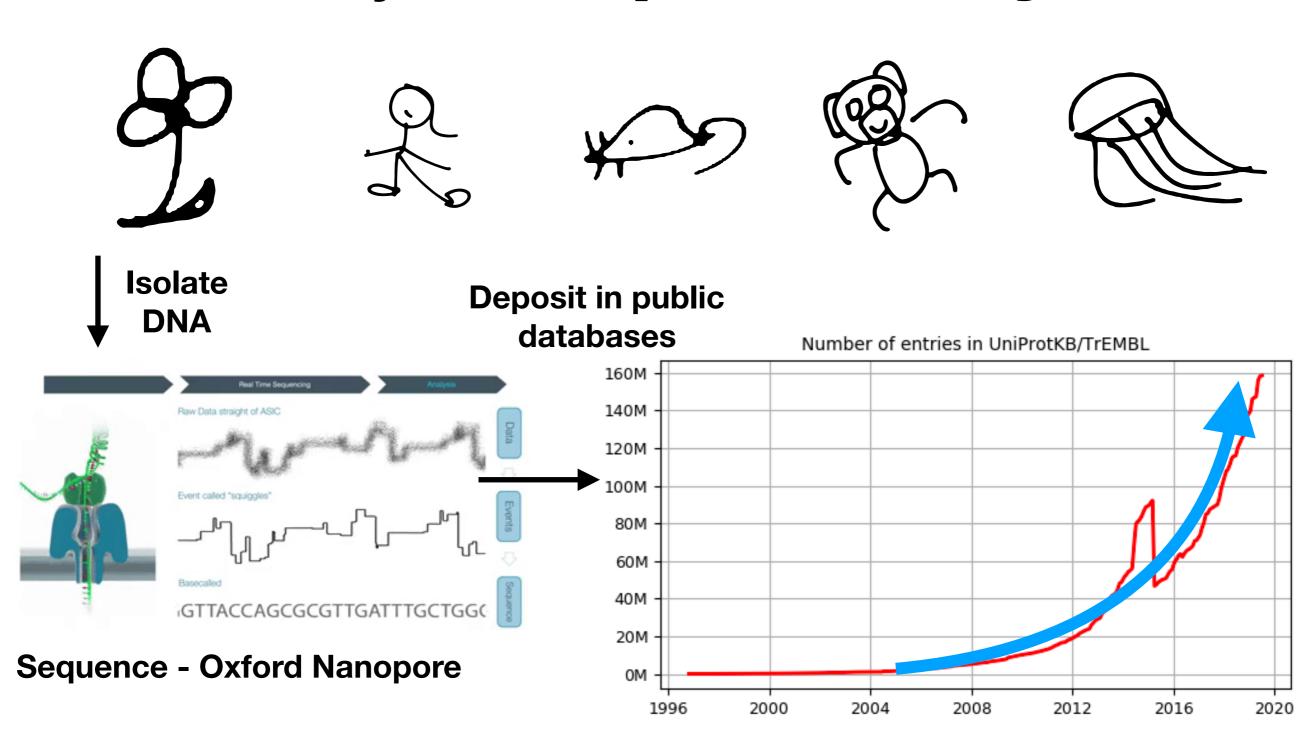
https://www.uniprot.org/statistics/TrEMBL



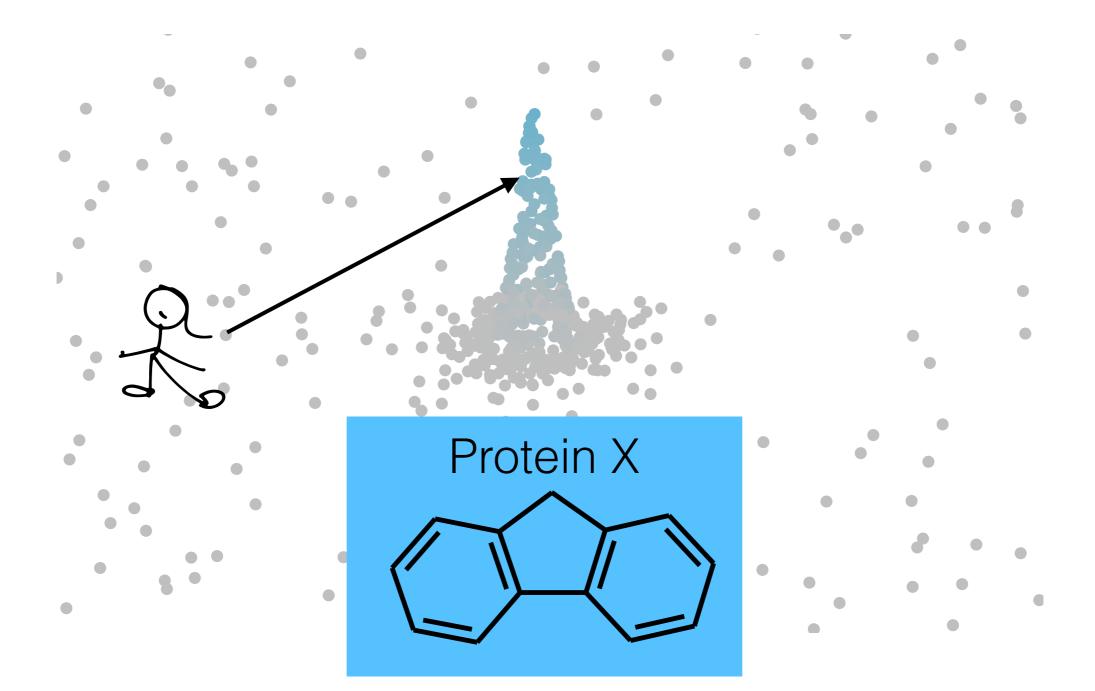
Sequence - Oxford Nanopore

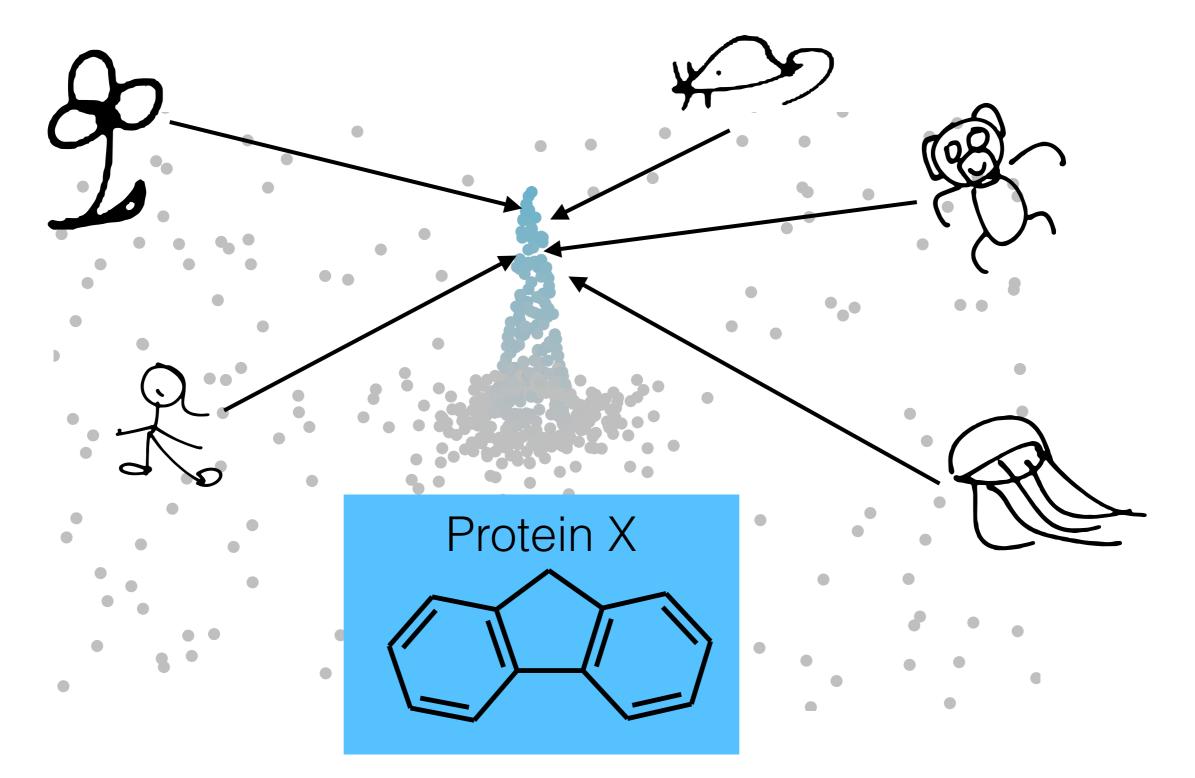


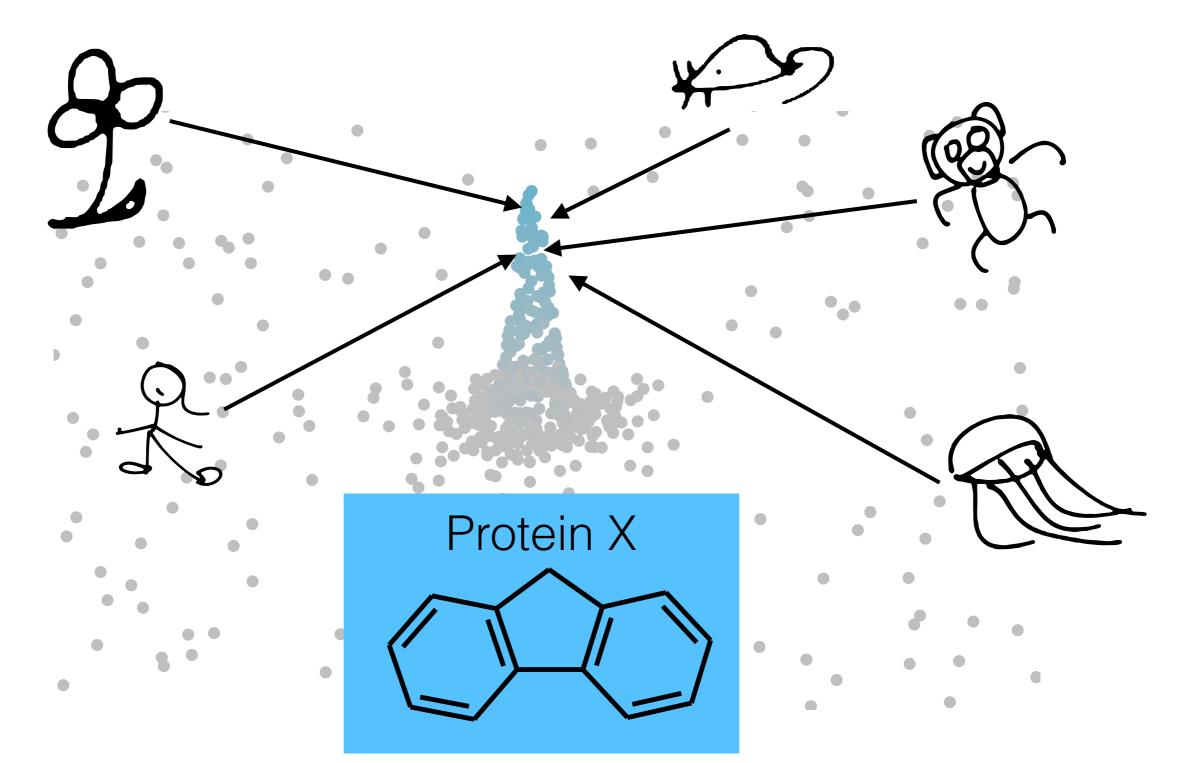
https://www.uniprot.org/statistics/TrEMBL



https://www.uniprot.org/statistics/TrEMBL



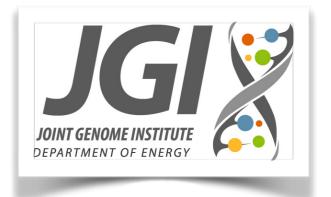




All are functional, homologous examples of Protein X

Sequences are found in public genome databases.

Sequences are found in public genome databases.



Natural evolution is an experiment, in parallel.

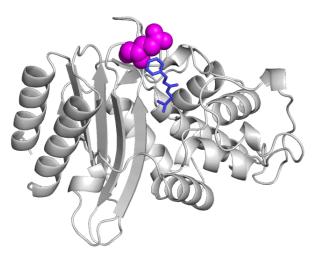
Sequences are found in public genome databases.

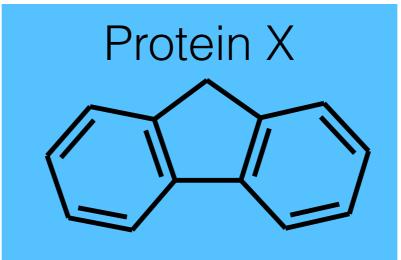
Natural **evolution** is an **experiment**, in **parallel**. <u>Assumption:</u>

Present in database: Tolerated

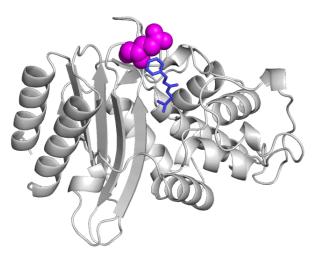
Not in database: Deleterious

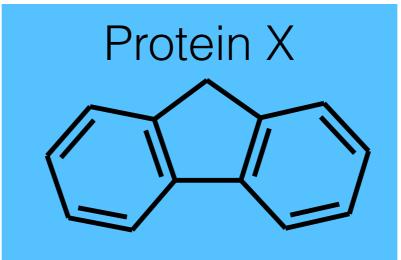
MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVAGPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW



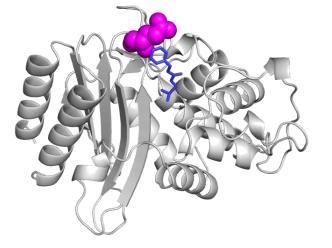


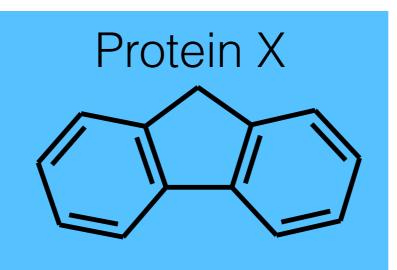
MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVAGPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW



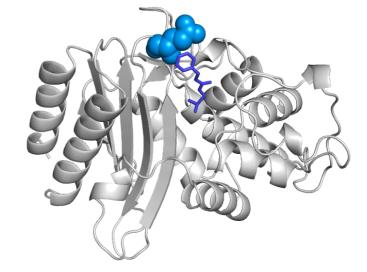


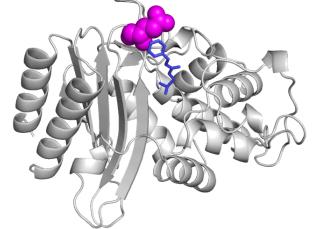
MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

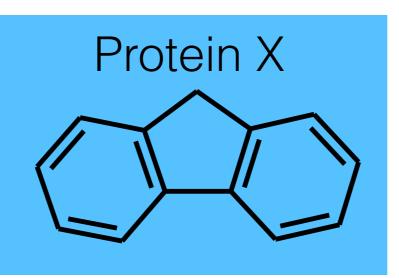




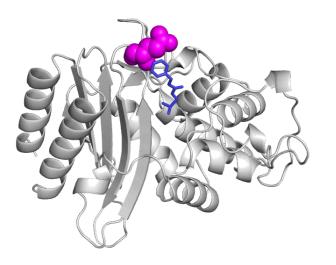
MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

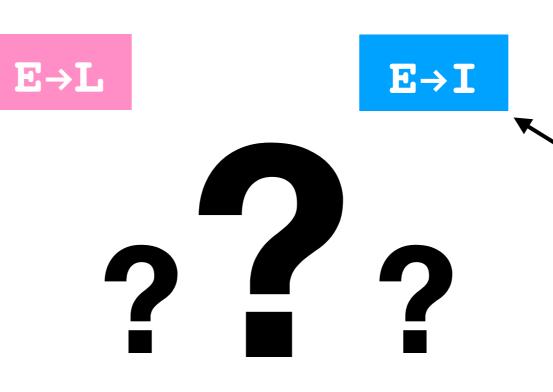


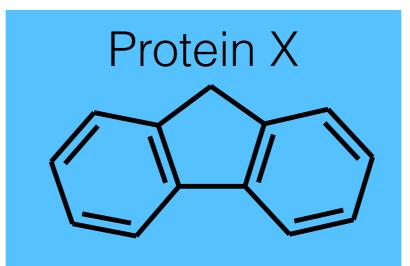


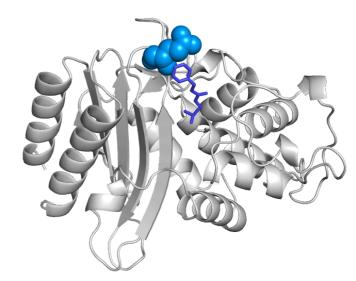


MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

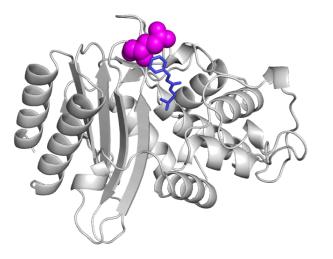


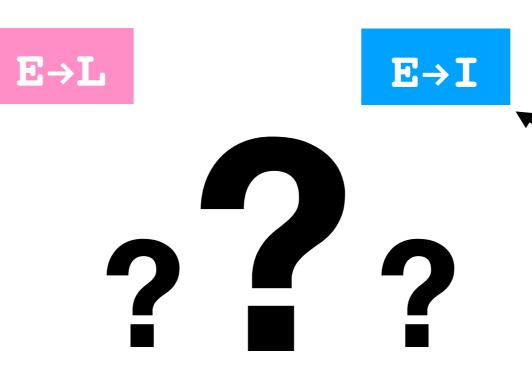




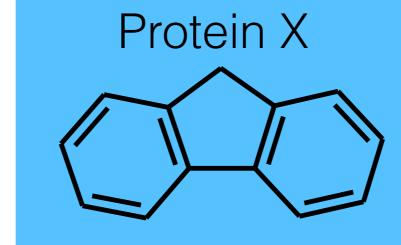


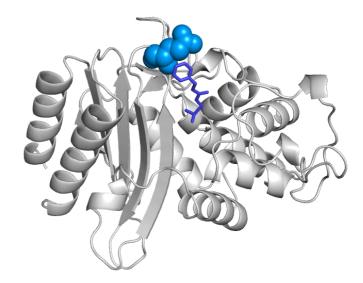
MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW





How can we formulate this problem?





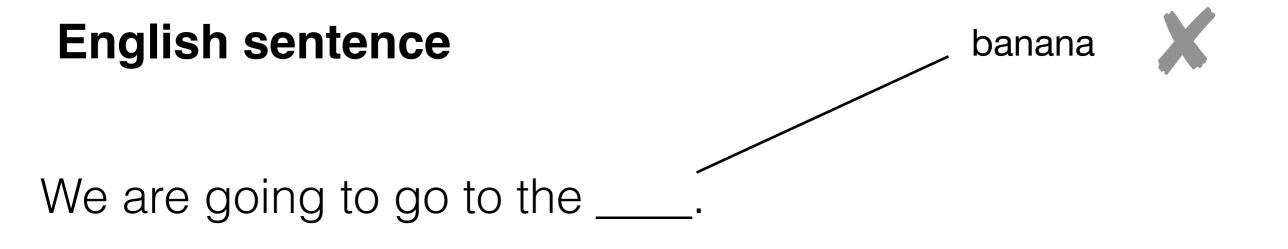
A generative model finds probable "words" based on context

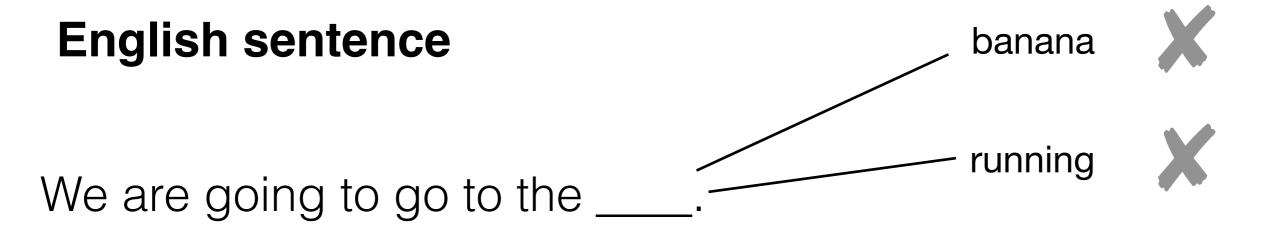
A generative model finds probable "words" based on context

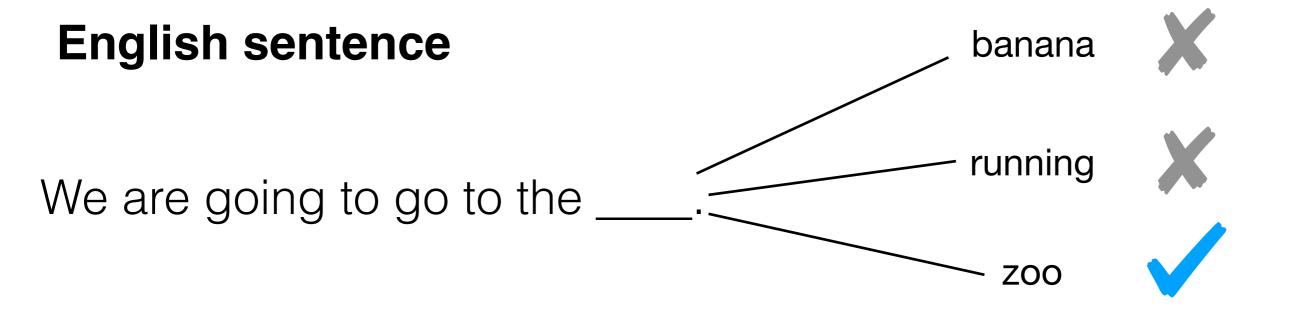
English sentence

We are going to go to the _____.

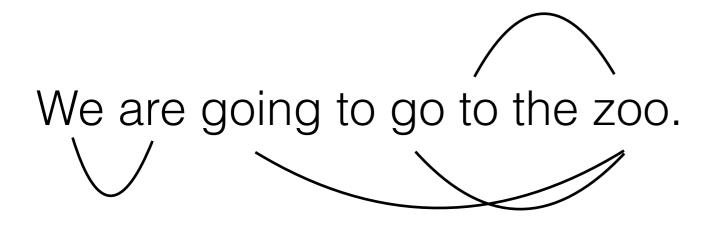
A generative model finds probable "words" based on context





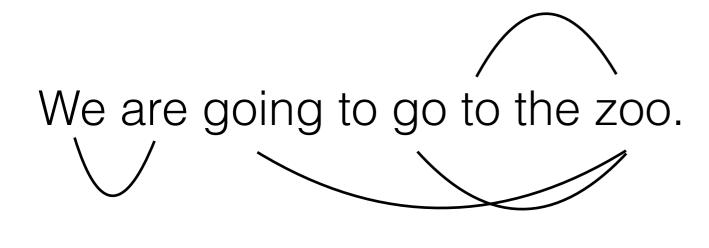


English sentence



P(x) finds **probable** "words" based on **context**

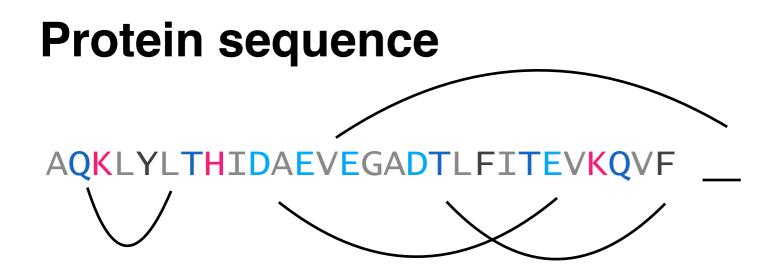
English sentence

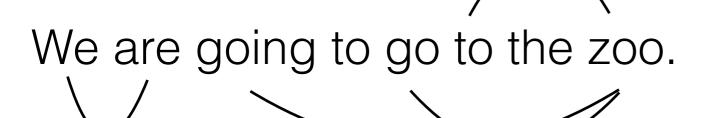


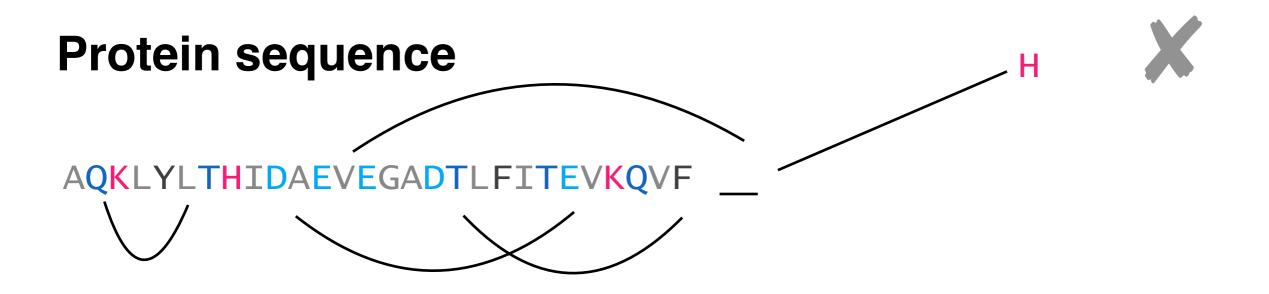
P(x) finds **probable** "words" based on **context**

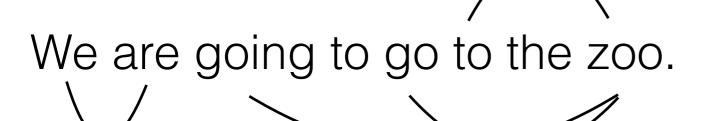
Protein sequence

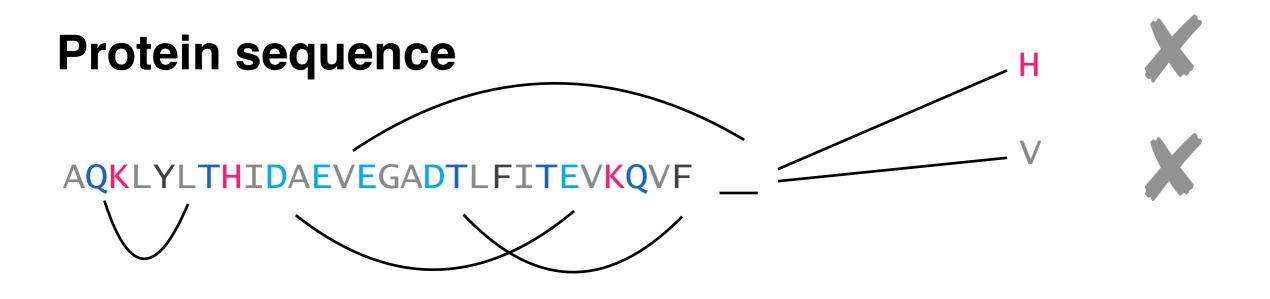




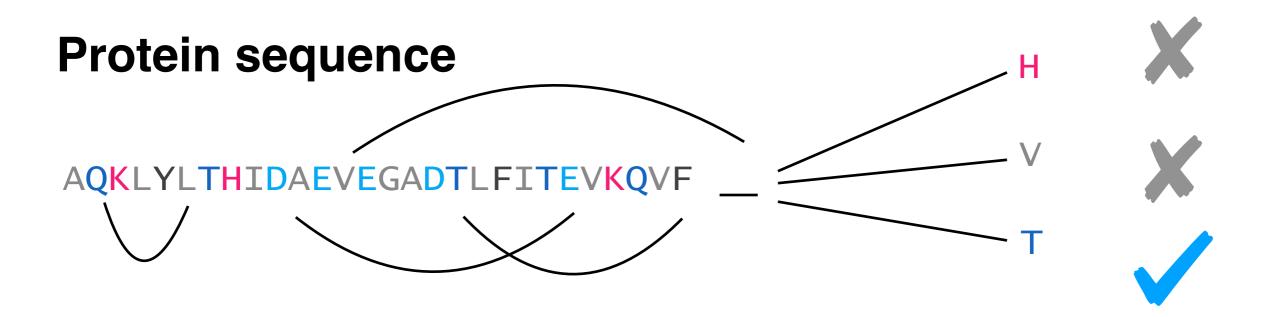










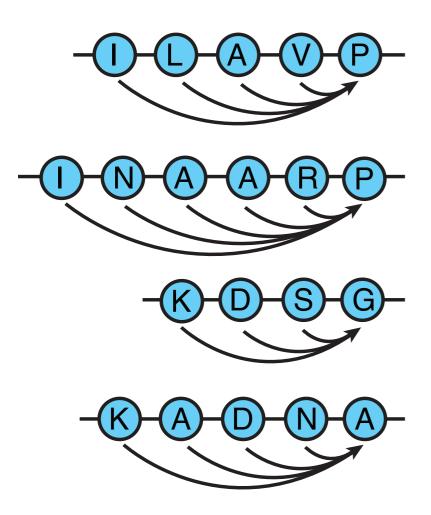


L $p(x|\theta) = \int p(x_i|x_{< i}, \theta)$ 2

We are going to go to the <u>zoo</u>.

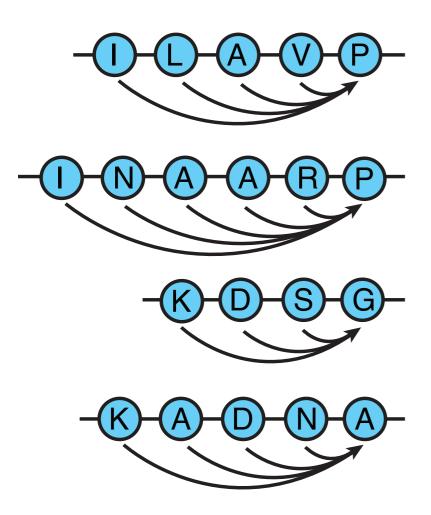
$$p(x|\theta) = \prod_{i}^{L} p(x_i|x_{< i}, \theta)$$

Autoregressive model



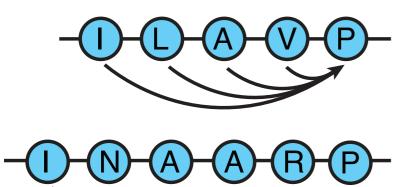
$$p(x|\theta) = \prod_{i}^{L} p(x_i|x_{< i}, \theta)$$

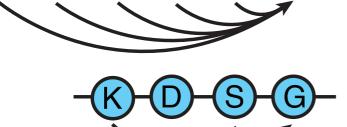
Autoregressive model

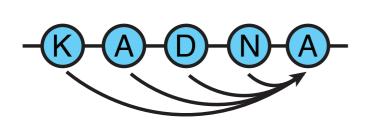


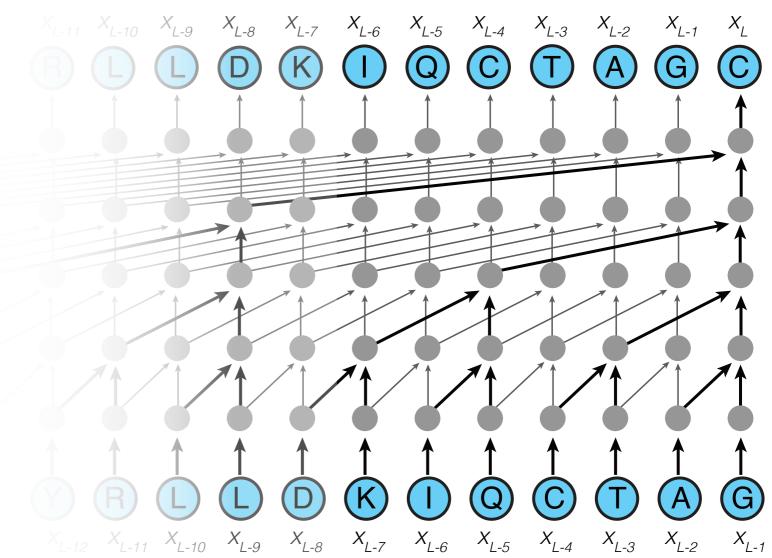
$$p(x|\theta) = \prod_{i}^{L} p(x_i|x_{< i}, \theta)$$

Autoregressive model





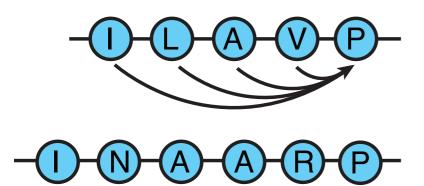


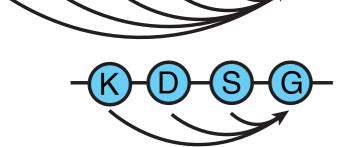


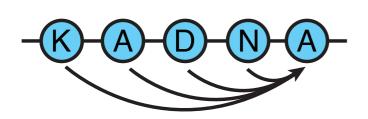
Dilated convolutional neural network

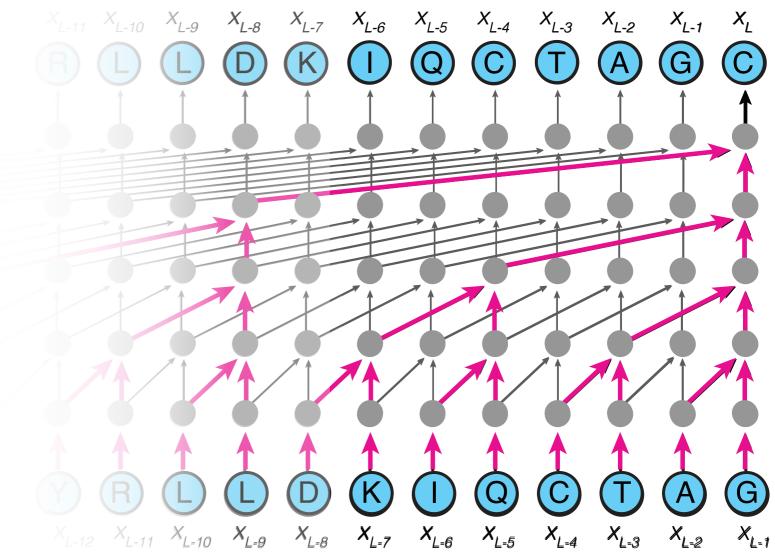
$$p(x|\theta) = \prod_{i}^{L} p(x_i|x_{< i}, \theta)$$

Autoregressive model



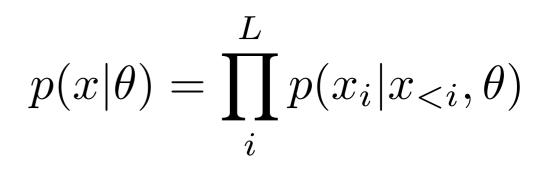


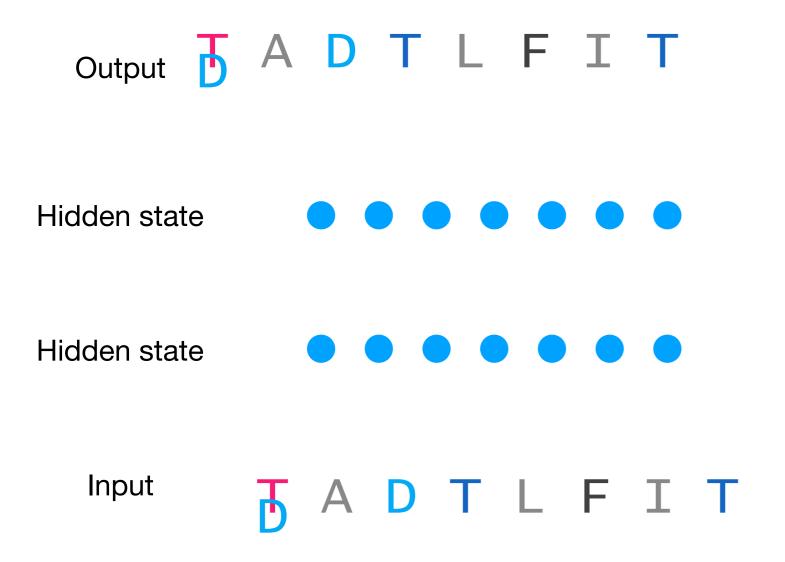




Dilated convolutional neural network

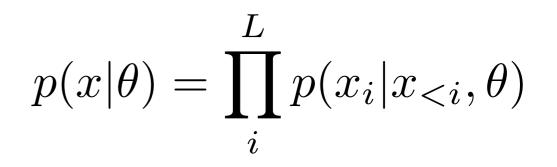
Utilizing an autoregressive likelihood

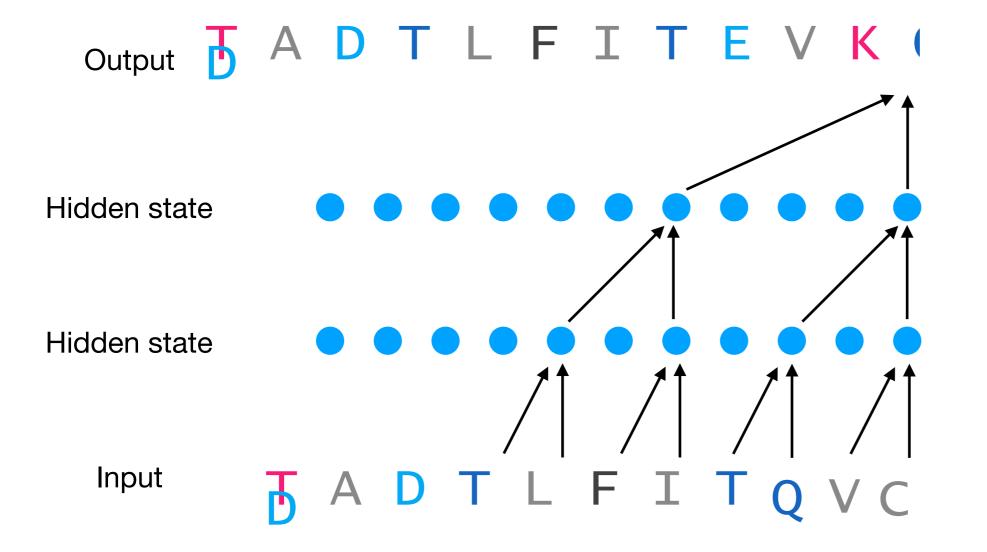




Adapted from: https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Utilizing an autoregressive likelihood





Adapted from: https://deepmind.com/blog/wavenet-generative-model-raw-audio/

1) Infer a **generative model** of the family

> AQKLYLTHIDAEVEGD ADRLYMTKIHHQFDGD ADTLFITEVKQVFEGD ADRLYMTKIHHTFDGD ADKLYCTLIHNSFEGD ADRLYMTKIHHEFEGD ADRLYLTMIHQKFEAD TDRLYITHIDETFEGD ADRLYLTQIRNKFKGD

> > \downarrow $p(\mathbf{x}|\boldsymbol{\theta})$

1) Infer a **generative model** of the family

AQKLYLTHIDAEVEGD ADRLYMTKIHHQFDGD ADTLFITEVKQVFEGD ADRLYMTKIHHTFDGD ADKLYCTLIHNSFEGD ADRLYMTKIHHEFEGD ADRLYLTMIHQKFEAD TDRLYITHIDETFEGD ADRLYLTQIRNKFKGD

2) Compute Log Ratio for each mutant

$$\log \frac{p(\mathbf{x}_{mut}|\boldsymbol{\theta})}{p(\mathbf{x}_{wild}|\boldsymbol{\theta})}$$

 $p(\mathbf{x}|\boldsymbol{\theta})$

1) Infer a **generative model** of the family

AQKLYLTHIDAEVEGD ADRLYMTKIHHQFDGD ADTLFITEVKQVFEGD ADRLYMTKIHHTFDGD ADKLYCTLIHNSFEGD ADRLYMTKIHHEFEGD ADRLYLTMIHQKFEAD TDRLYITHIDETFEGD ADRLYLTQIRNKFKGD

 $p(\mathbf{x}|\boldsymbol{\theta})$

2) Compute Log Ratio for each mutant

$$\log \frac{p(\mathbf{x}_{mut}|\boldsymbol{\theta})}{p(\mathbf{x}_{wild}|\boldsymbol{\theta})}$$

"How much does this mutation look like what we've seen in nature?"

Infer a generative 2) Compute Log Ratio model of the family for each mutant Uses public data (effectively free)

AQKLYLTHIDAEVEGD ADRLYMTKIHHQFDGD ADTLFITEVKQVFEGD ADRLYMTKIHHTFDGD ADKLYCTLIHNSFEGD ADRLYMTKIHHEFEGD ADRLYLTMIHQKFEAD TDRLYITHIDETFEGD ADRLYLTQIRNKFKGD

 $\log \frac{p(\mathbf{x}_{mut}|\boldsymbol{\theta})}{p(\mathbf{x}_{wild}|\boldsymbol{\theta})}$

"How much does this mutation look like what we've seen in nature?"

Infer a generative 2) Compute Log Ratio model of the family for each mutant Uses public data (effectively free)

AQKLYLTHIDAEVEGD ADRLYMTKIHHQFDGD ADTLFITEVKQVFEGD ADRLYMTKIHHTFDGD ADRLYCTLIHNSFEGD ADRLYMTKIHHEFEGD ADRLYLTMIHQKFEAD TDRLYITHIDETFEGD ADRLYLTQIRNKFKGD

Fast

"How much does this mutation look like who we've seen in nature?

Infer a generative 2) Compute Log Ratio model of the family for each mutant Uses public data (effectively free)

AQKLYLTHIDAEVEGD ADRLYMTKIHHQFDGD ADTLFITEVKQVFEGD ADRLYMTKIHHTFDGD ADKLYCTLIHNSFEGD ADRLYMTKIHHEFEGD ADRLYLTMIHQKFEAD TDRLYITHIDETFEGD ADRLYLTQIRNKFKGD

 $\log \frac{p(\mathbf{x}_{mut}|\boldsymbol{\theta})}{p(\mathbf{x}_{wild}|\boldsymbol{\theta})}$

Works on almost any protein

Fast

"How much does this mutation look like what we've seen in nature?"

Infer a generative 2) Compute Log Ratio model of the family for each mutant Uses public data (effectively free)

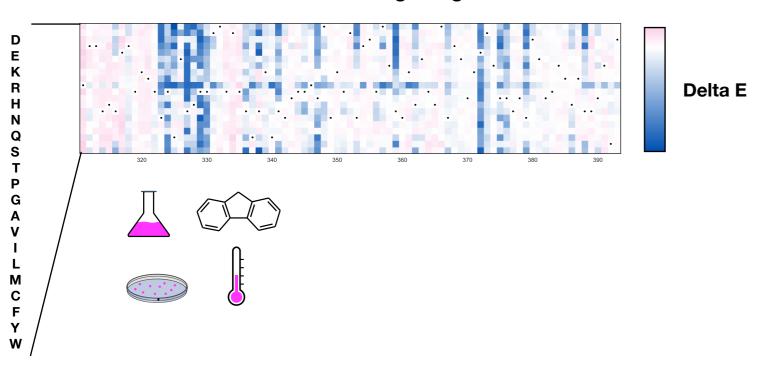
AQKLYLTHIDAEVEGD ADRLYMTKIHHQFDGD ADTLFITEVKQVFEGD ADRLYMTKIHHTFDGD ADKLYCTLIHNSFEGD ADRLYMTKIHHEFEGD ADRLYLTMIHQKFEAD TDRLYITHIDETFEGD ADRLYLTQIRNKFKGD

Fast

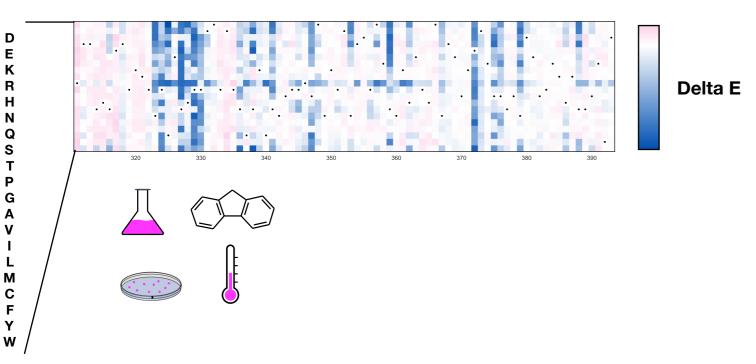
Works on almost any protein

Accurate

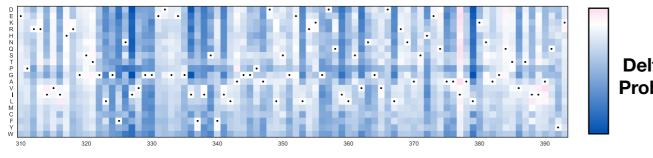
PDZ domain binding to ligand

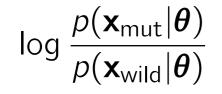


McLaughlin Jr, R.N., Poelwijk, F.J., Raman, A., Gosal, W.S. and Ranganathan, R., 2012. The spatial architecture of protein function and adaptation. Nature, 491(7422), pp.138-142.

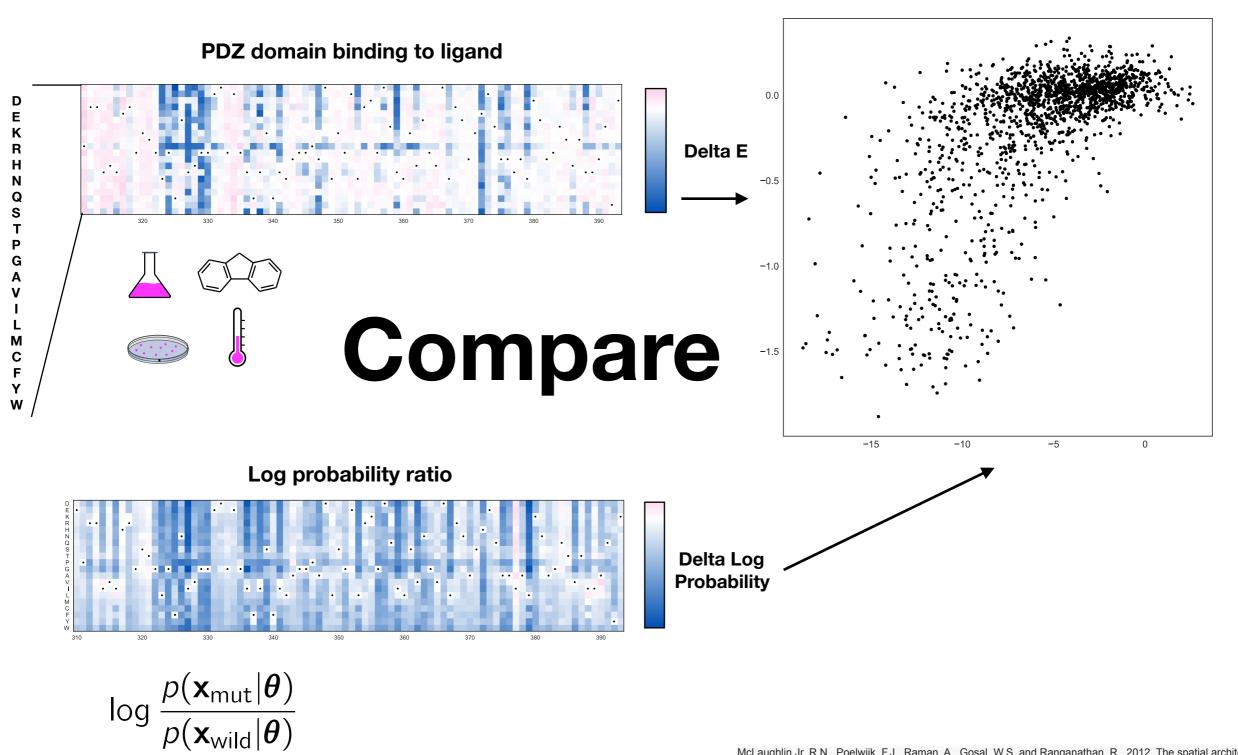


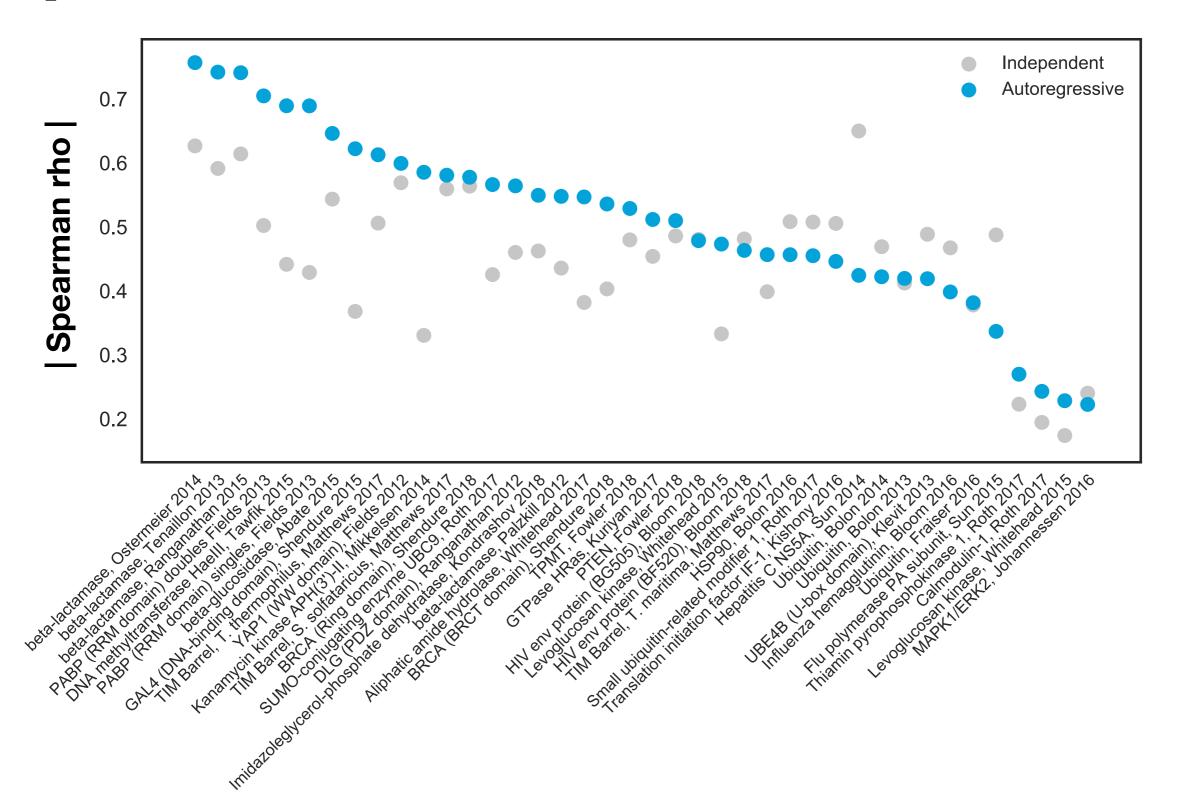
Log probability ratio

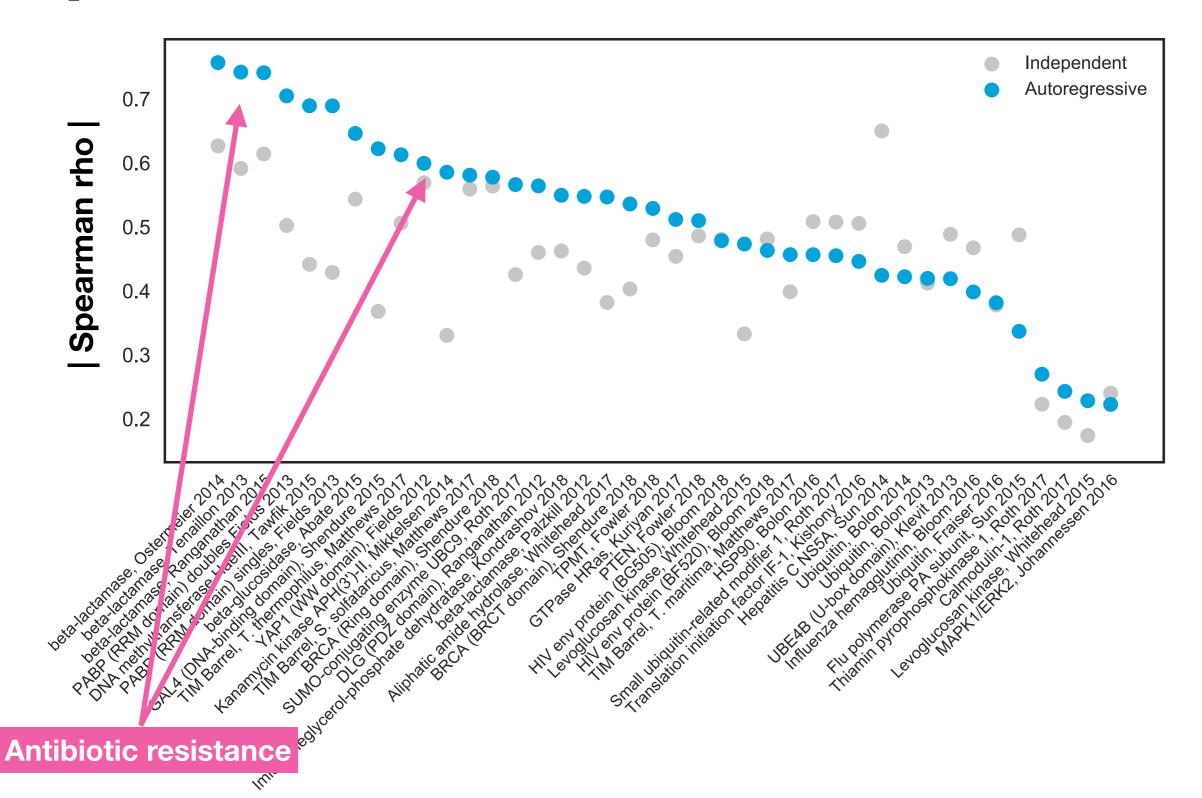


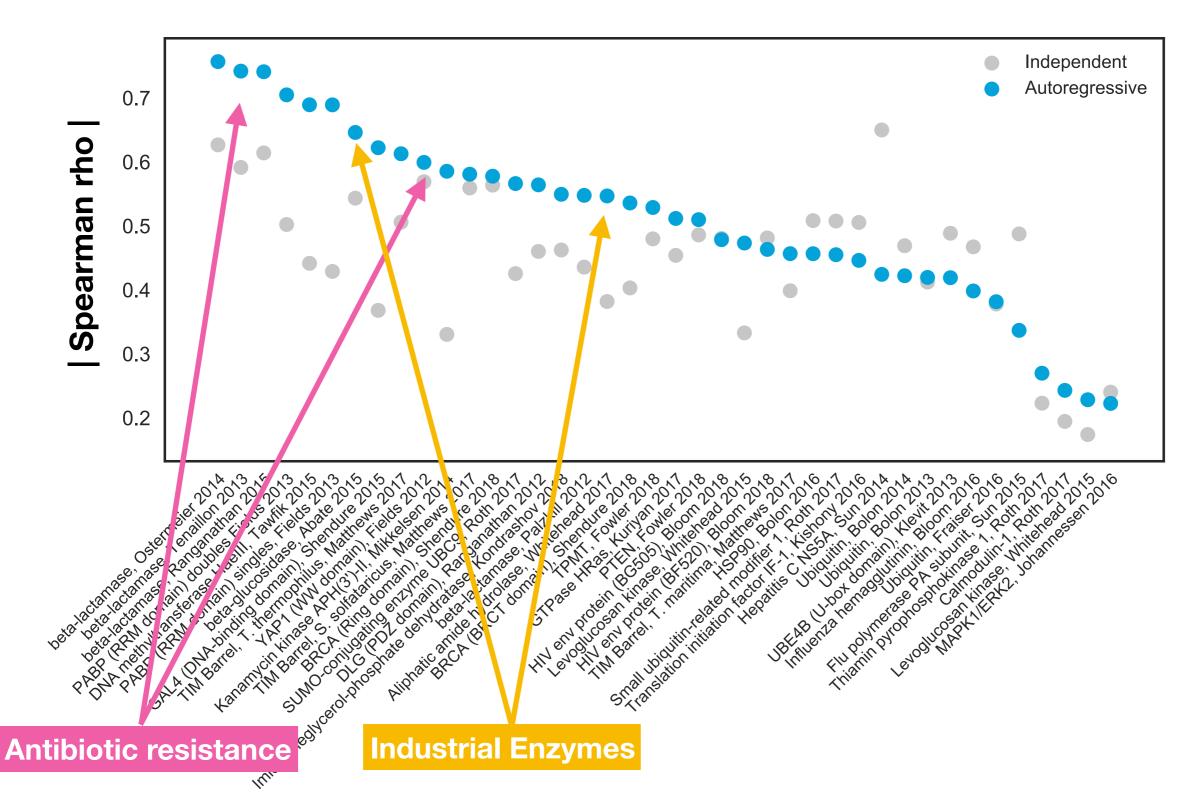


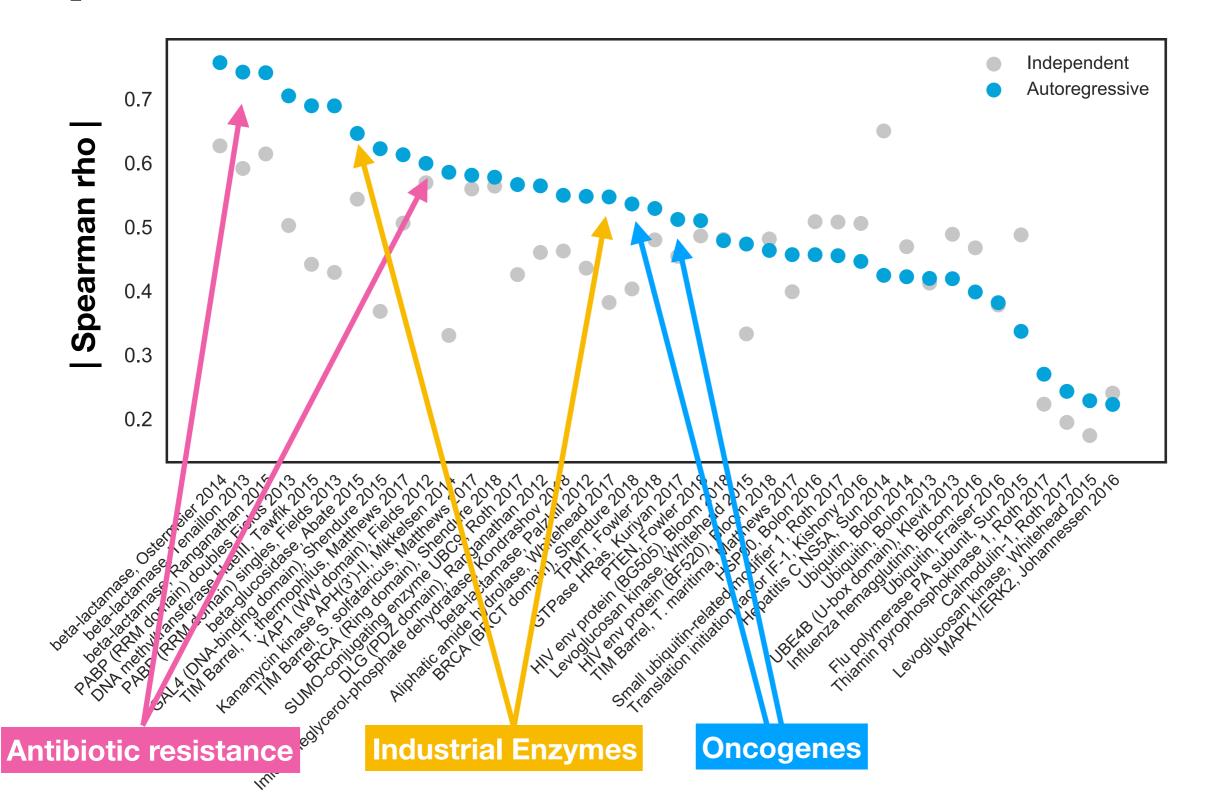
Delta Log Probability











Missense mutations

...DKSGAGVRGSRGIIA...

...DKSGAGIRGSRGIIA...

Missense mutations

...DKSGAG<mark>EGT</mark>RGSRGIIA...

Insertions

...DKSGAGVRGSRGIIA...

...DKSGAGIRGSRGIIA...

Missense mutations

...DKSGAG<mark>EGT</mark>RGSRGIIA...

Insertions

...DKSGAGVRGSRGIIA...

Deletions

...DKSGAGIRGSRGIIA...

...DKSGAGRGSRGIIA...

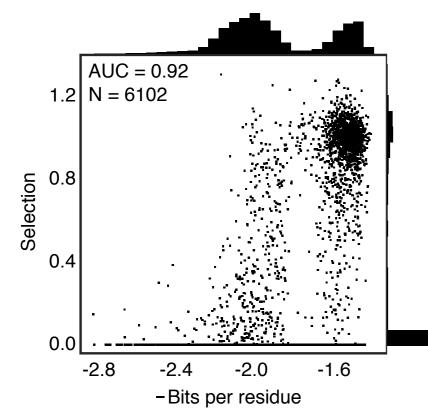
Models predict the effects of insertions and deletions

...DKSGAGRGSRGIIA...

...DKSGAG<mark>EGT</mark>RGSRGIIA...

Imidazoleglycerol-phosphate dehydratase

Insertions & deletions



Models predict the effects of insertions and deletions

...DKSGAG<mark>EGT</mark>RGSRGIIA...

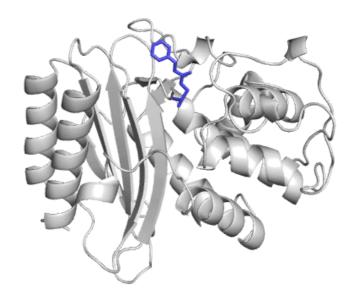
-Bits per residue

...DKSGAGRGSRGIIA...

Imidazoleglycerol-phosphate dehydratase PTEN phosphatase Single amino acid deletions **Insertions & deletions** Deletions Phosphatase C2 AUC = 0.83 AUC = 0.92N = 3401.2 N = 6102 **Dumulative score** Selection 0.8 2 0.4 -5 Deleterious Neutral 0.0 -6 -2.0 -2.4 -2.0 -1.6 -1.9-1.8 -1.7-2.8

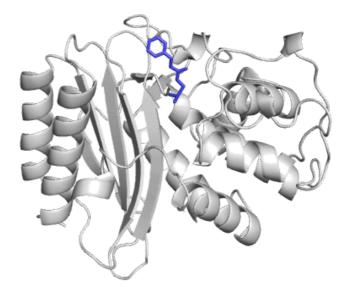
- Bits per residue

Predicting the effects of mutations is important



Predicting the effects of mutations is important

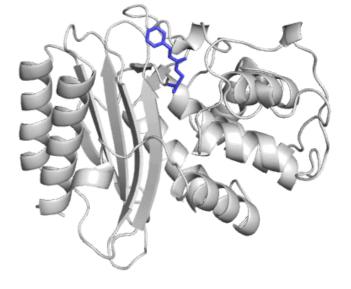
Sequencing is becoming cheaper and easier



GTGTTGCCAACTCGAAGGCTCTGCTCACCAATGTACATGG AAAGAGCCGTTTAATCTCGGGCGCCTTAATTCGCCTCGTGA TTCCAGCCAGGCAGTGGCGGATCAATATGCCGACTTCCTG ACACCTCGTCGATGGATTACTACCATCAGTTGCGTTATGC GTTGGGGCTGGATTACCGGTTATTGAGAACCTGCAAAATC TCTTTCTGGTTCGCTTTCTTATATCTTCGGCAAGTTAGAC AAATGGGTTATACCGAACCGGACCCGCGGATGATCTTC GAAACGGGACGTGAACTGGAGCTGGCGGATATTGAAATTG TGCCGCTTTTATGGCGAATCTGTCACAACTCGACGATCTC

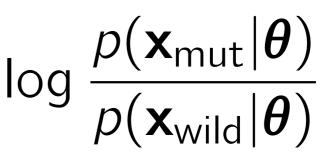
Predicting the effects of mutations is important

Sequencing is becoming cheaper and easier



GTGTTGCCAACTCGAAGGCTCTGCTCACCAATGTACATGG AAAGAGCCGTTTAATCTCGGGCGCTTAATTCGCCTCGTGA TTCCAGCCAGGCAGTGGCGGATCAATATGCCGACTTCCTG ACACCTCGTCGATGGATTACTACCATCAGTTGCGTTATGC GTTGGGGCTGGATTACCGGTTATTGAGAACCTGCAAAATC TCTTTCTGGTTCGCTTTCTTATATCTTCGGCAAGTTAGAC AAATGGGTTATACCGAACCGGACCCGCGAGATGATCTTTC GAAACGGGACGTGAACTGGAGCTGGCGGATATTGAAATTG TGCCGCTTTTATGGCGAATCTGTCACAACTCGACGATCTC

Generative models fit to biological sequence data can predict the effect of mutations



Founded by Daphne Koller in 2018

Founded by Daphne Koller in 2018

Create a new paradigm for drug development

Founded by Daphne Koller in 2018

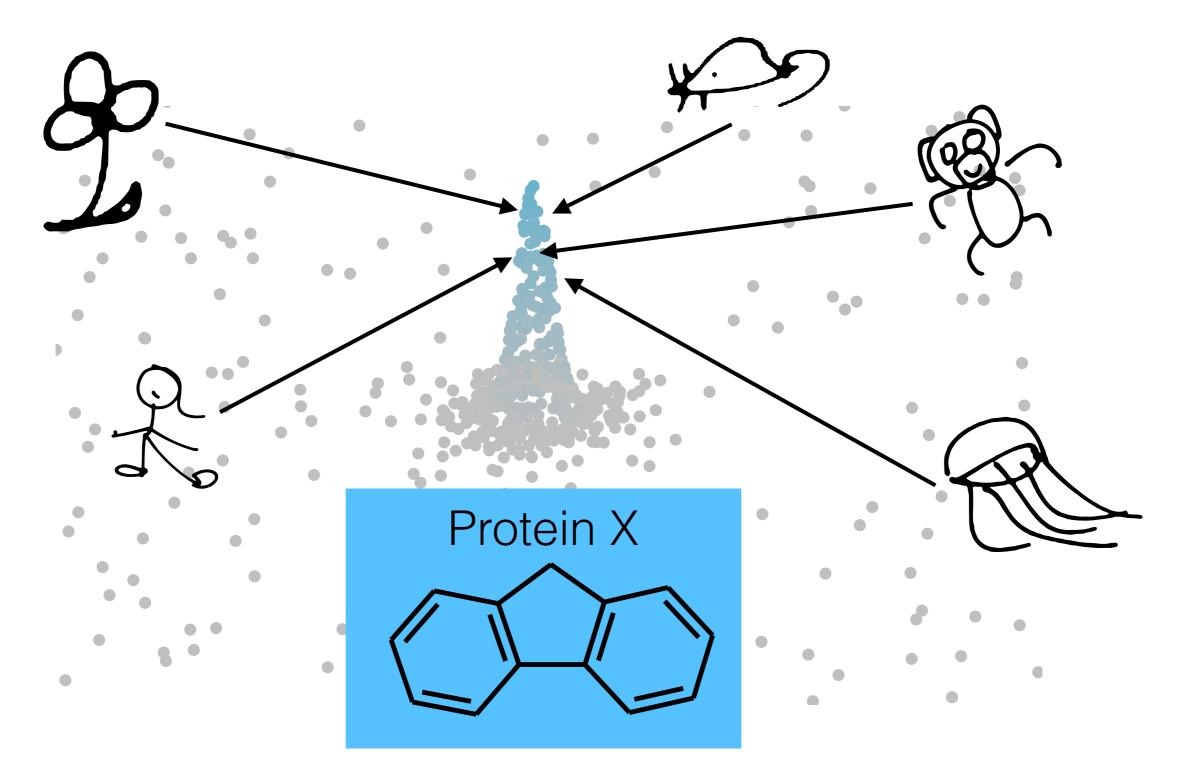
Create a **new paradigm** for **drug development** that uses **high-quality data** and **data-driven models**

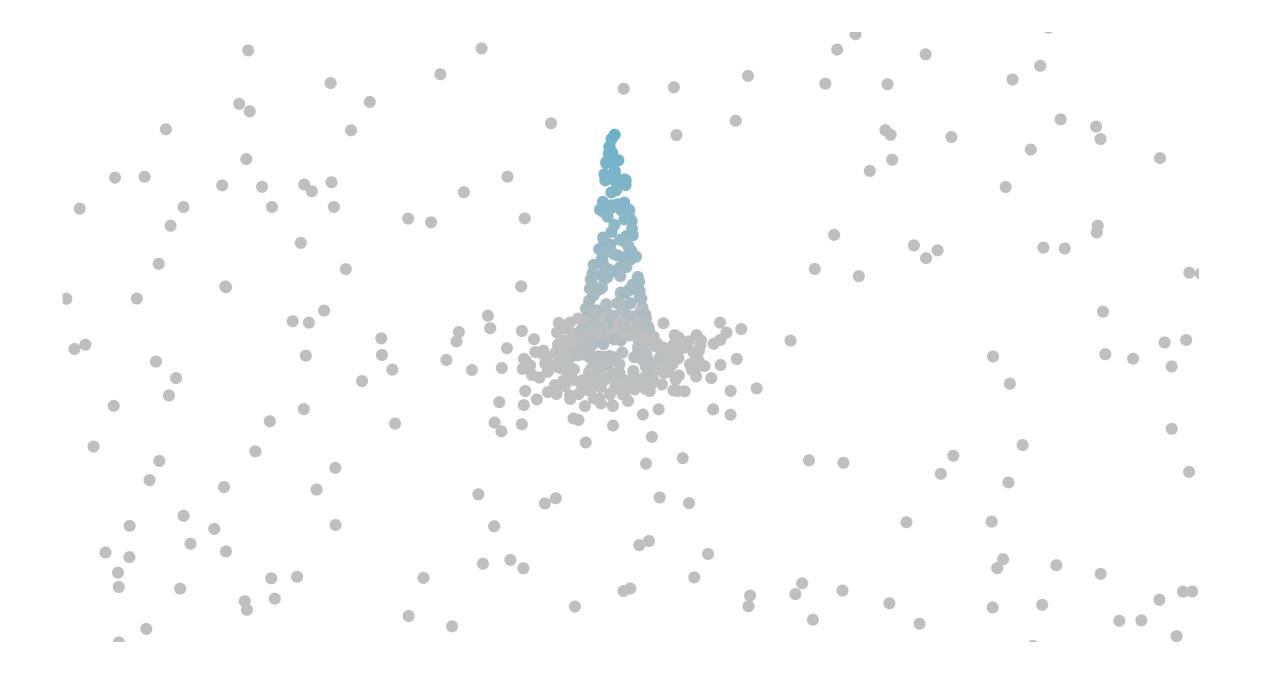
Founded by Daphne Koller in 2018

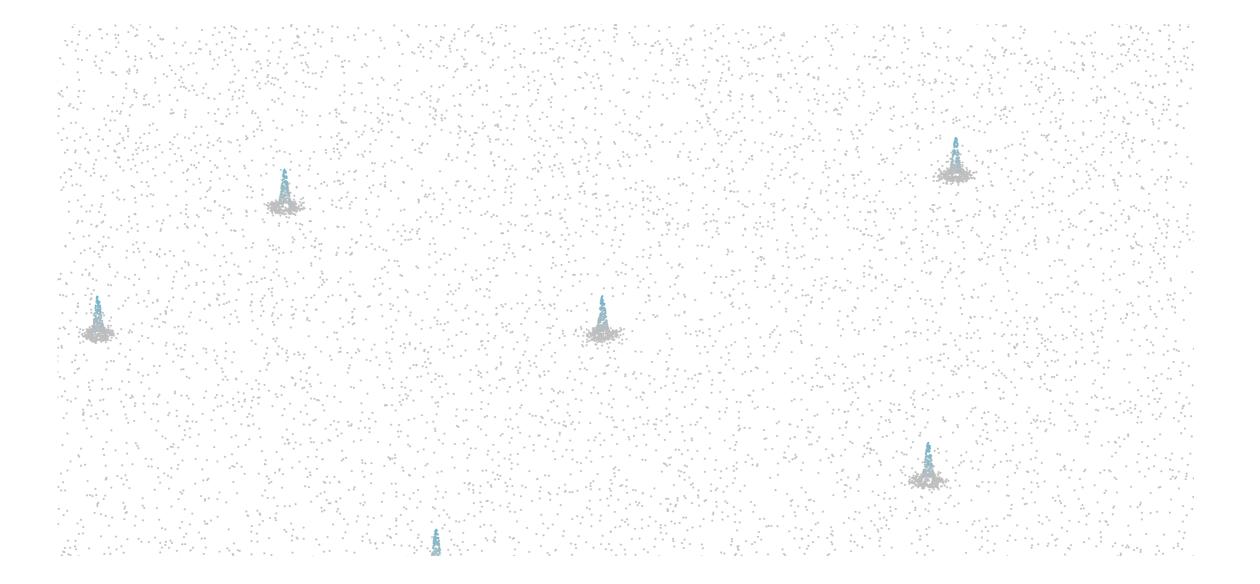
Create a **new paradigm** for **drug development** that uses **high-quality data** and **data-driven models** to design **novel**, **safe**, and effective therapies

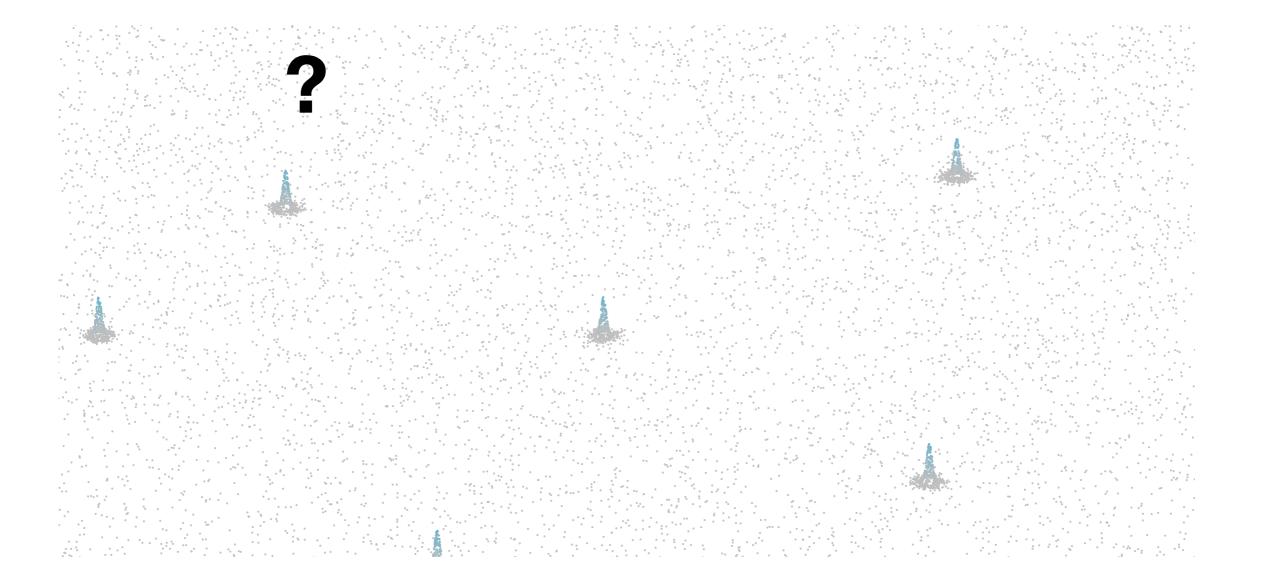
Founded by Daphne Koller in 2018

Create a **new paradigm** for **drug development** that uses **high-quality data** and **data-driven models** to design **novel**, **safe**, and effective therapies that help **more people**, **faster**, and at a **lower cost**.









TC CAT

TC CAT ACG Alzheimer's Disease

TC CAT ACG Alzheimer's Disease

TC CAT ACG Alzheimer's Disease

Chromosome 4

CCTGGA

CC

TC CAT ACG Alzheimer's Disease

Chromosome 4

CCT

CC

Chromosome 2

T cells Autoimmune Disorder

TC CAT ACG Alzheimer's Disease

Chromosome 4

CCT

CC

Chromosome 2

T cells Autoimmune Disorder

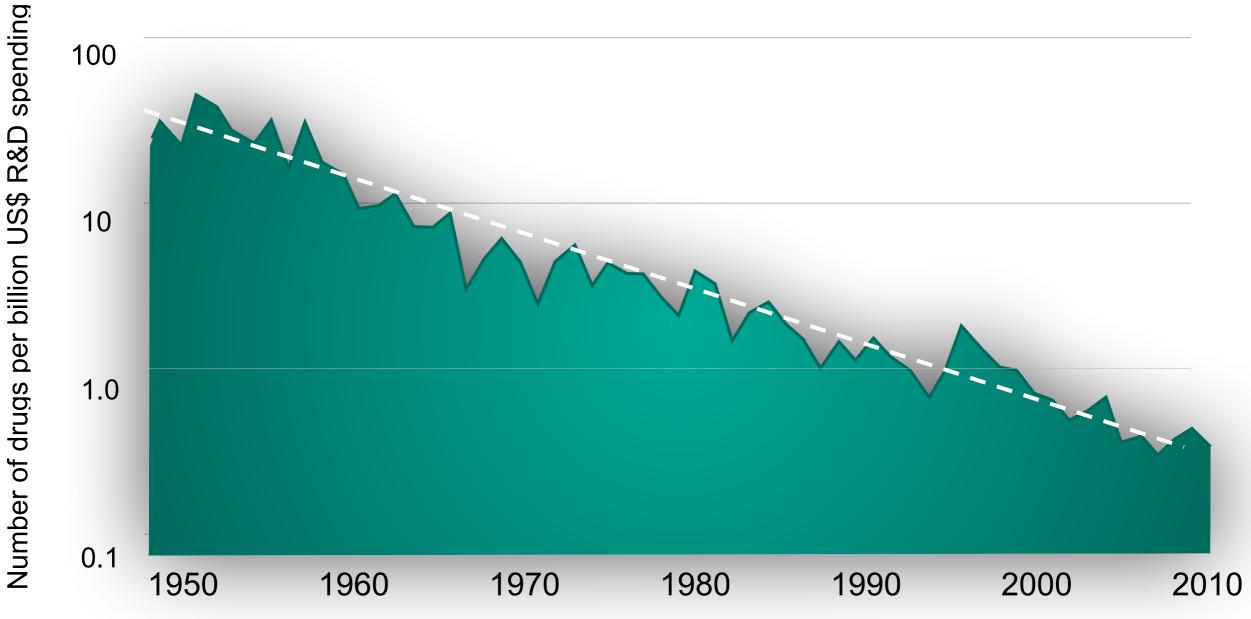
Drug discovery is becoming exponentially less efficient

Drug discovery is becoming exponentially less efficient

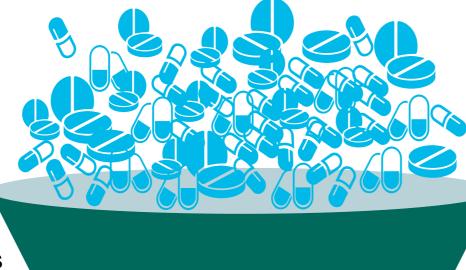
Moore's Law → Eroom's Law

Drug discovery is becoming exponentially less efficient

Moore's Law -------> Eroom's Law



Scannell et al, Nature Reviews Drug Discovery, 2012.



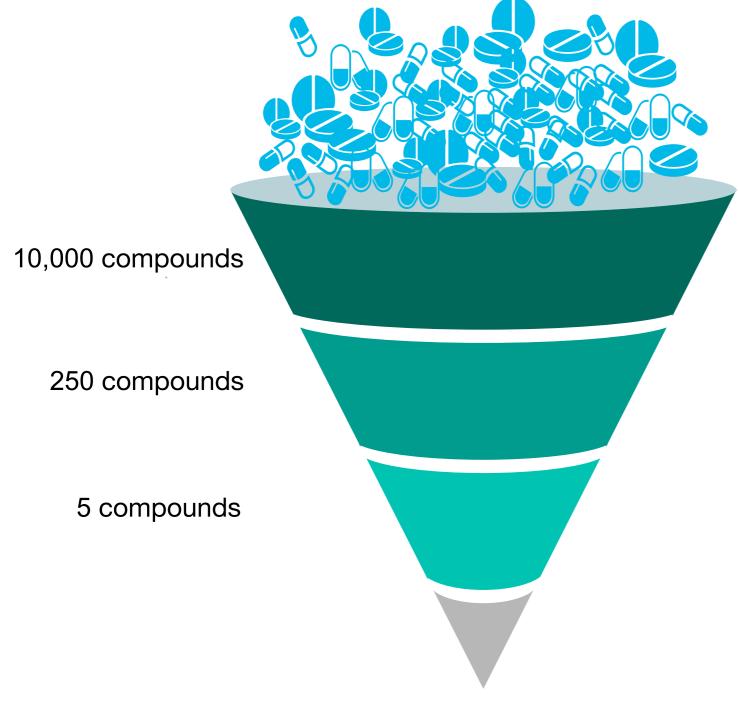
10,000 compounds

Step 1 Drug Discovery

10,000 compounds 250 compounds

Step 1 Drug Discovery

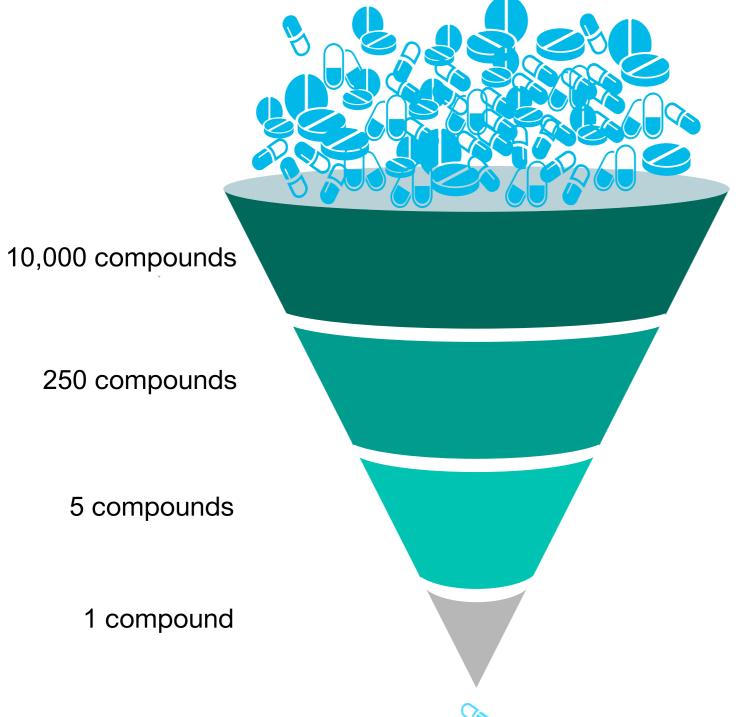
Step 2 Pre-Clinical Development



Step 1 Drug Discovery

Step 2 Pre-Clinical Development

Step 3 Clinical Development Phase I Phase II Phase III



Step 1 Drug Discovery

Step 2 Pre-Clinical Development

Step 3 Clinical Development Phase I Phase II Phase III

Regulatory Approval

What can we do to make this pipeline better?

250 compounds

5 compounds

1 compound

Step 2 Pre-Clinical Development

Step 3 Clinical Development Phase I Phase II Phase III

Regulatory Approval

What can we do to make this pipeline better?

250 compounds

Step 2 Pre-Clinical Development

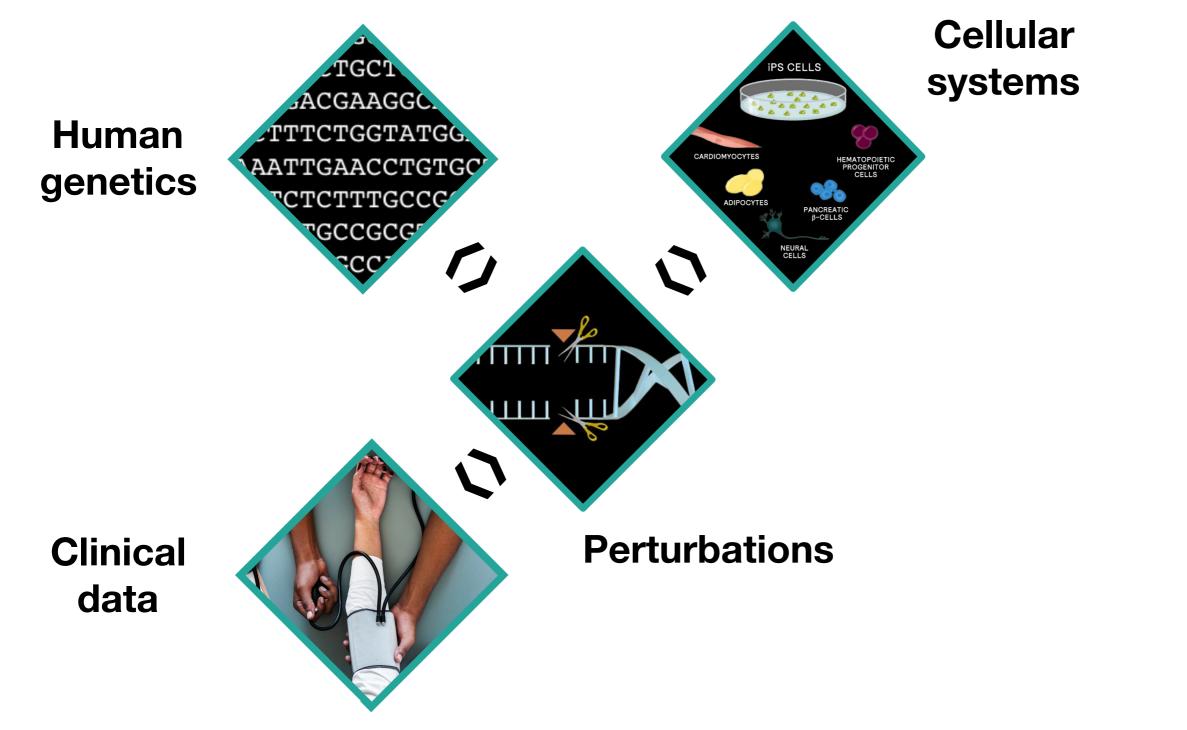
High-throughput biology ical Development

5 compounds

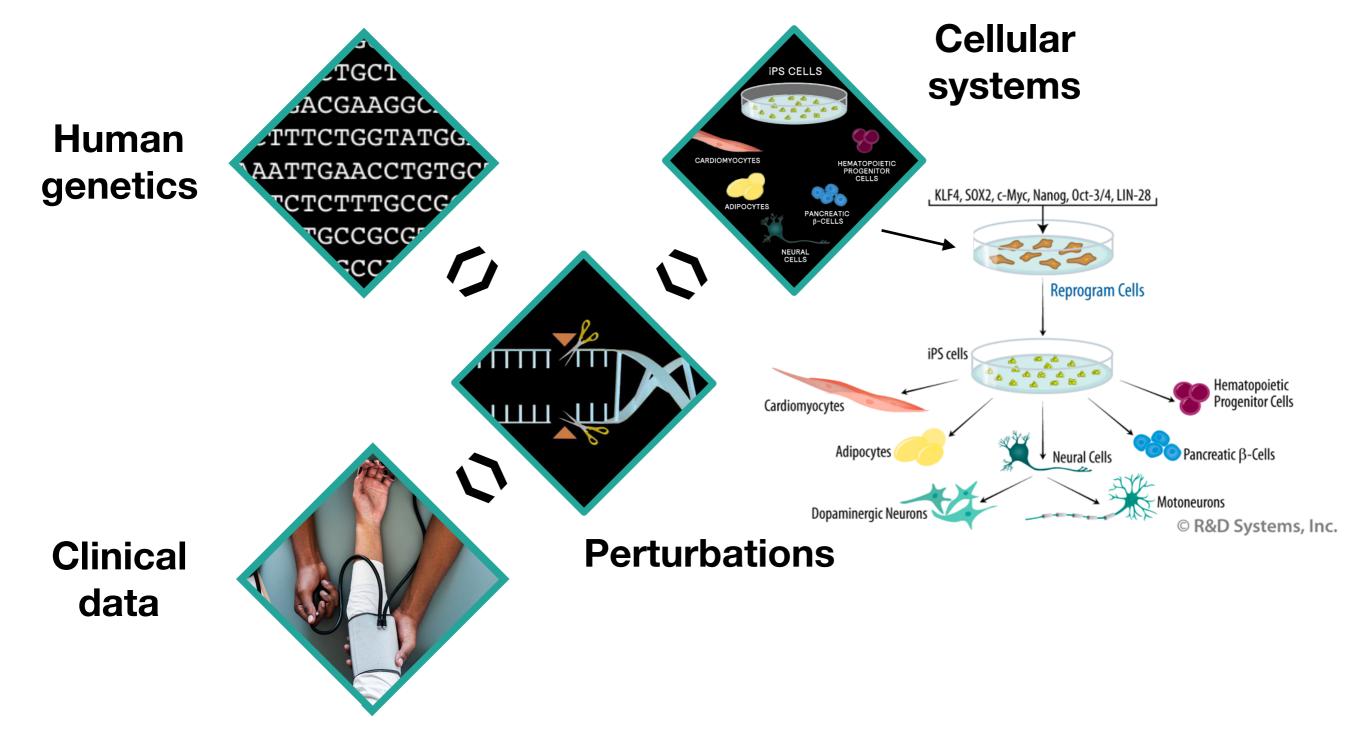
Computation Phase

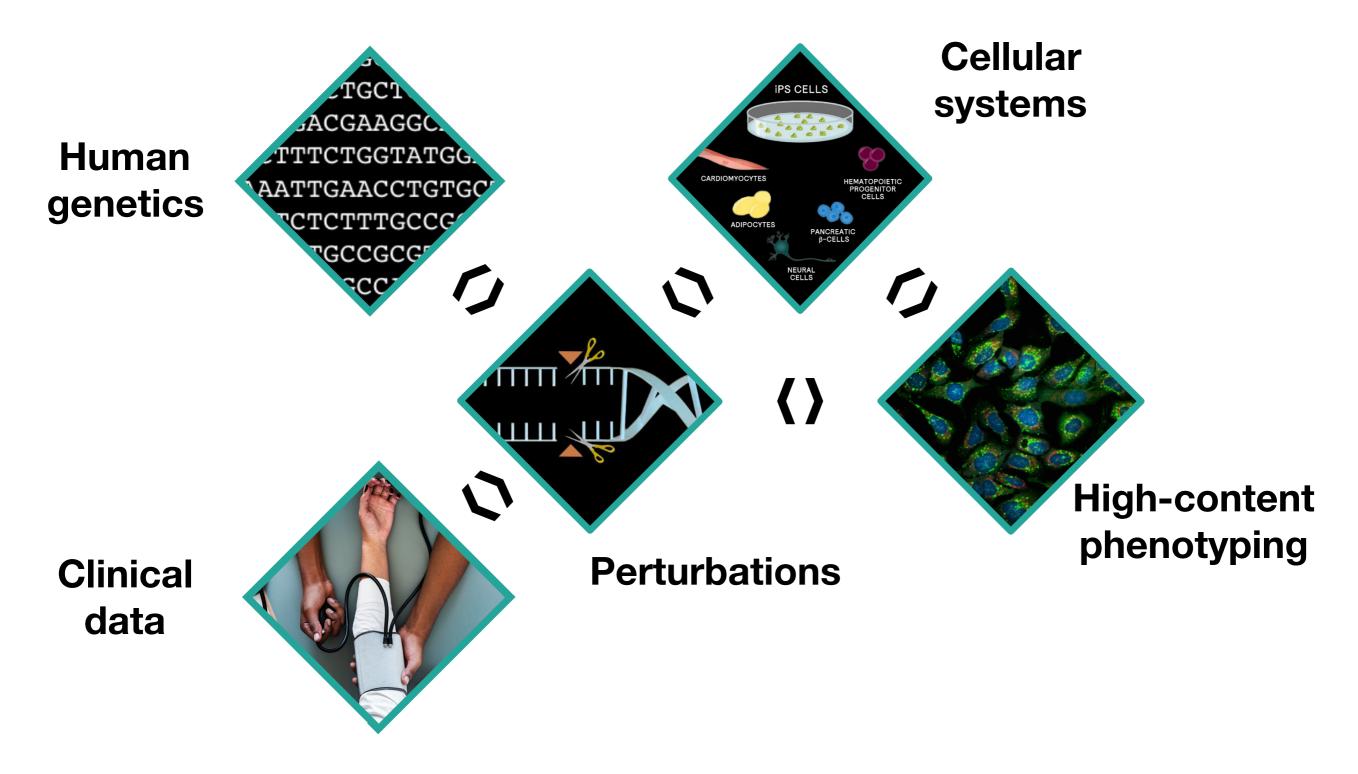
1 compound

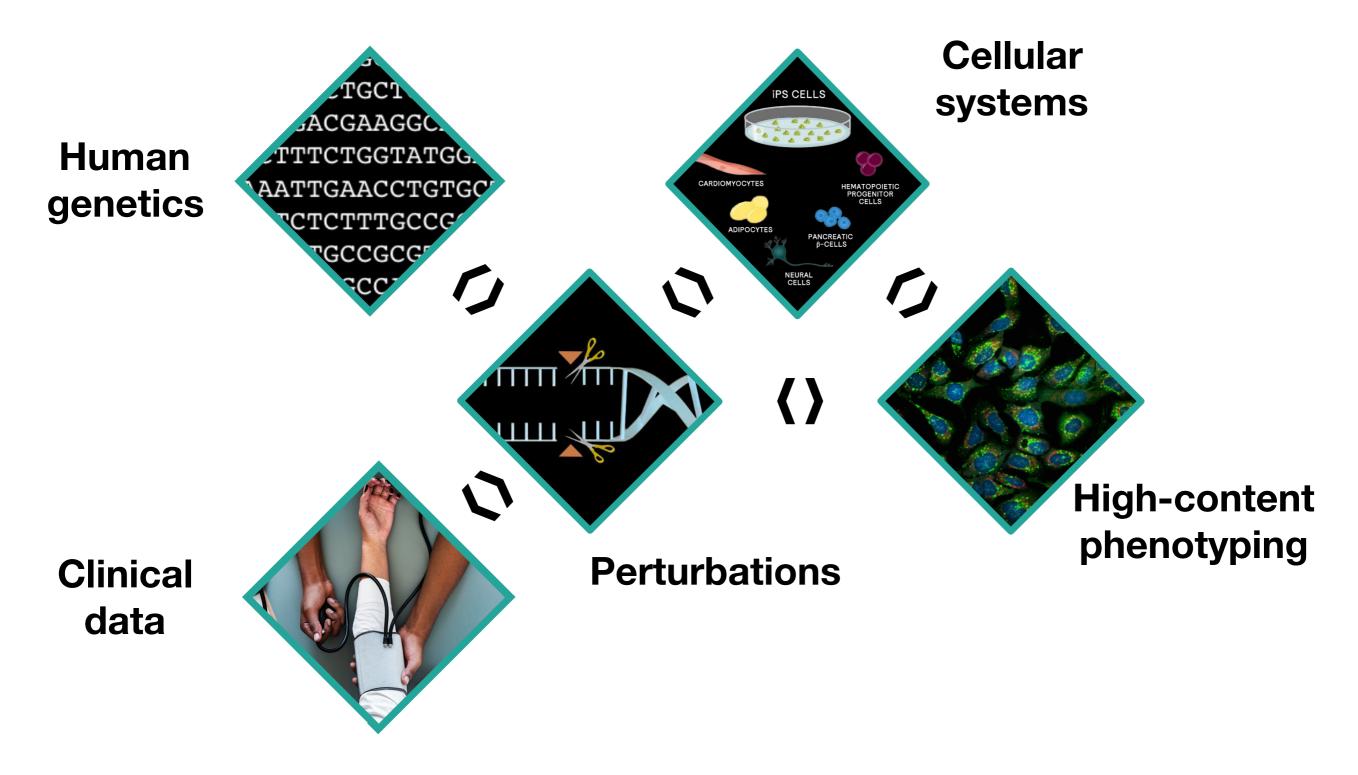
Regulatory Approval

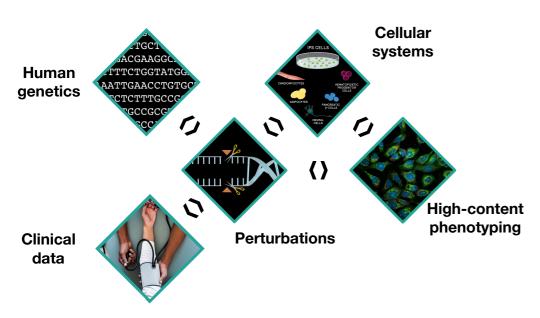


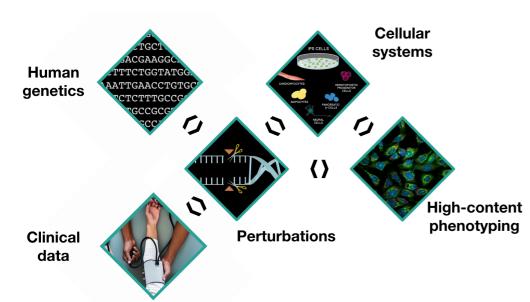
https://www.rndsystems.com/resources/articles/differentiation-potential-induced-pluripotent-stem-cells

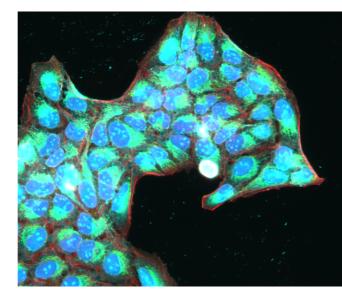




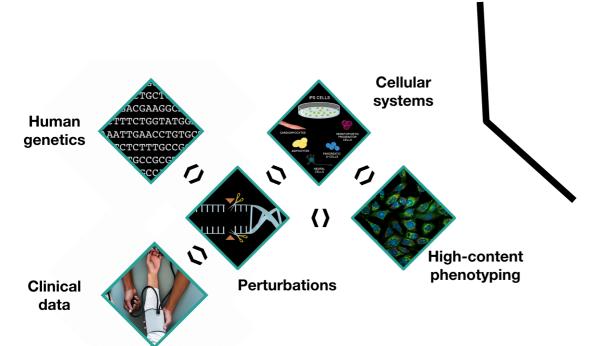




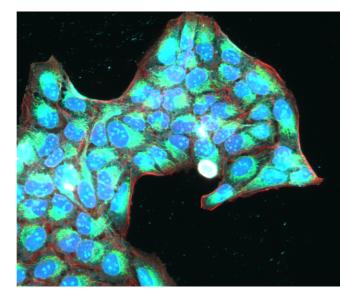




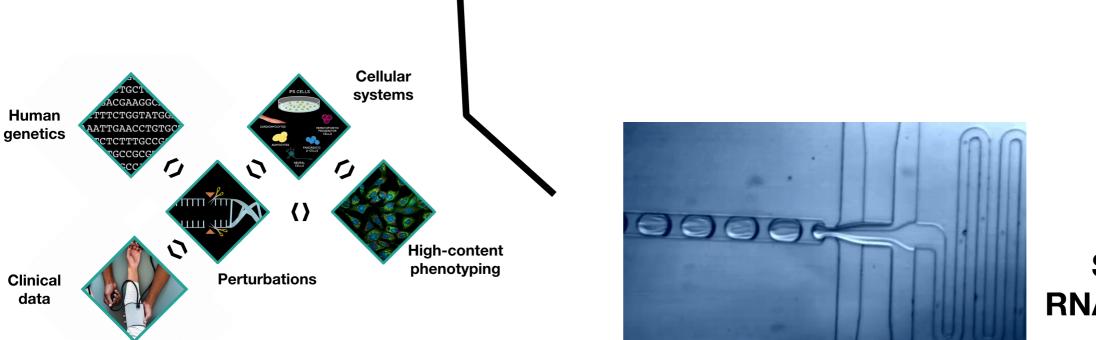
High-content microscopy

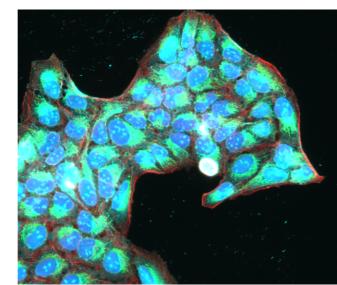


https://www.youtube.com/watch?v=vL7ptq2Dcf0



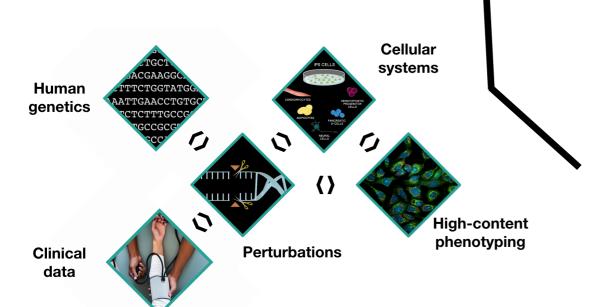
High-content microscopy

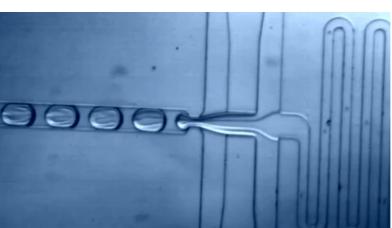


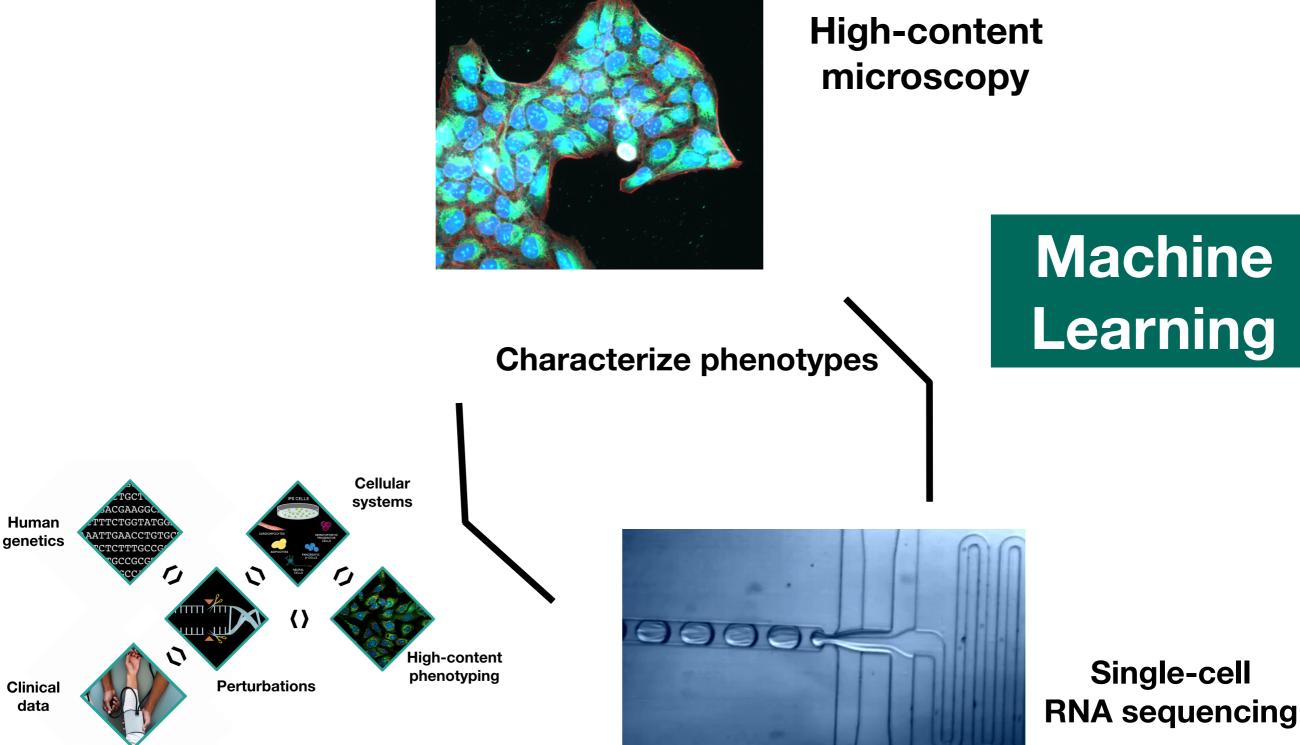


High-content microscopy

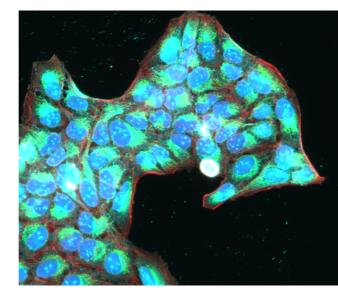
Machine Learning







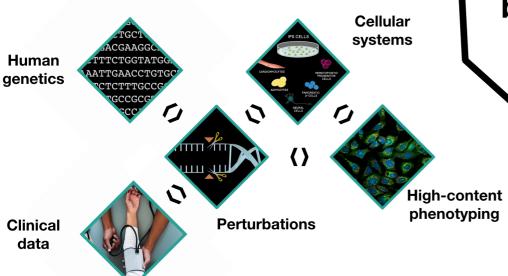
data

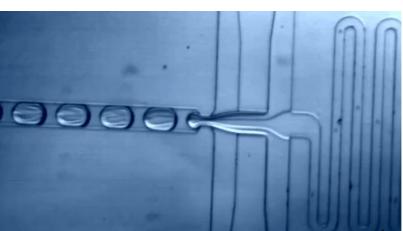


High-content microscopy

Characterize phenotypes

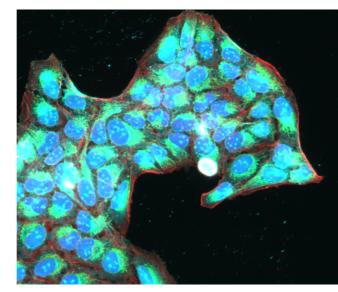
Understand relationships between data modalities





Machine Learning

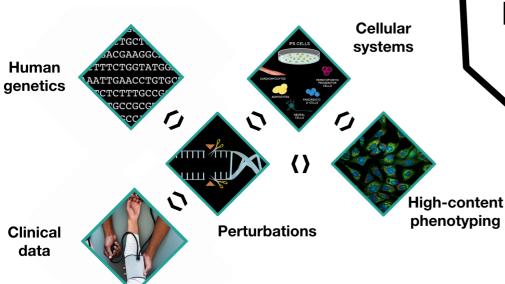
One experiment can test thousands of biological hypotheses

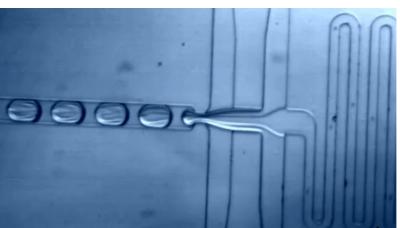


High-content microscopy

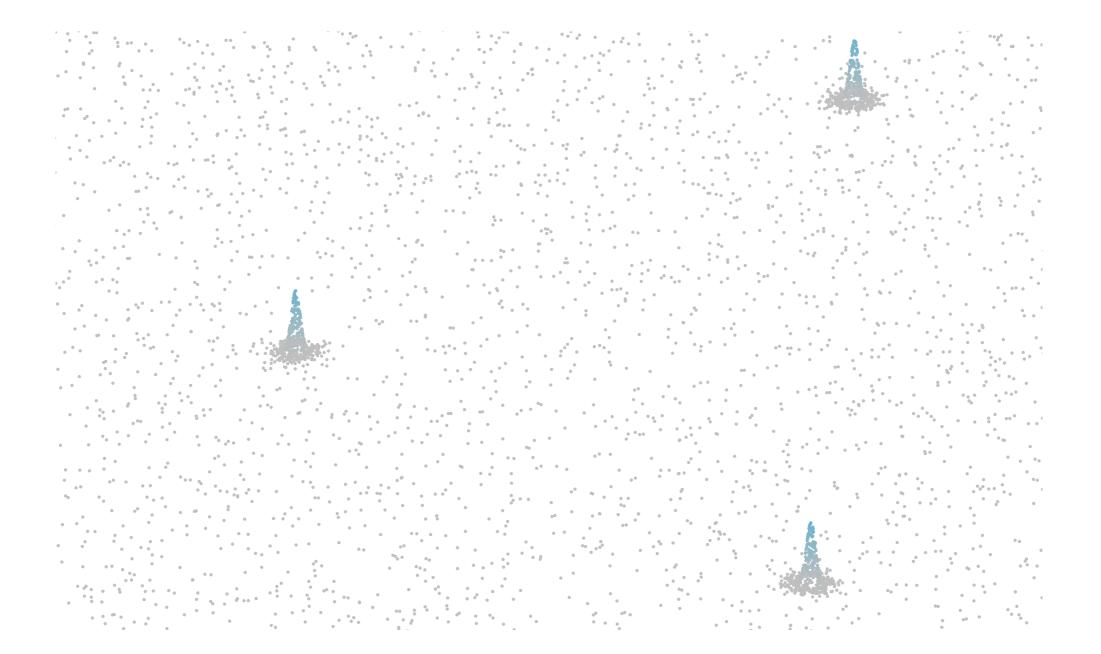
Characterize phenotypes

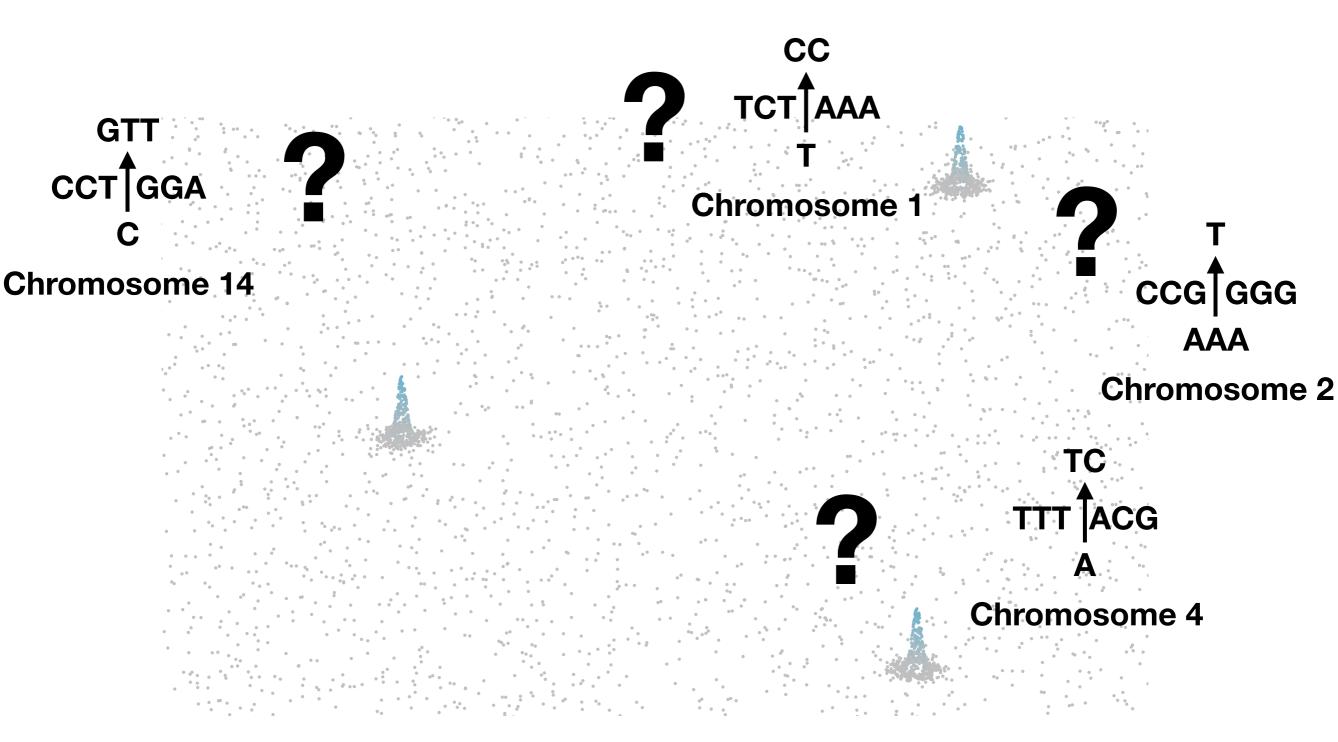
Understand relationships between data modalities

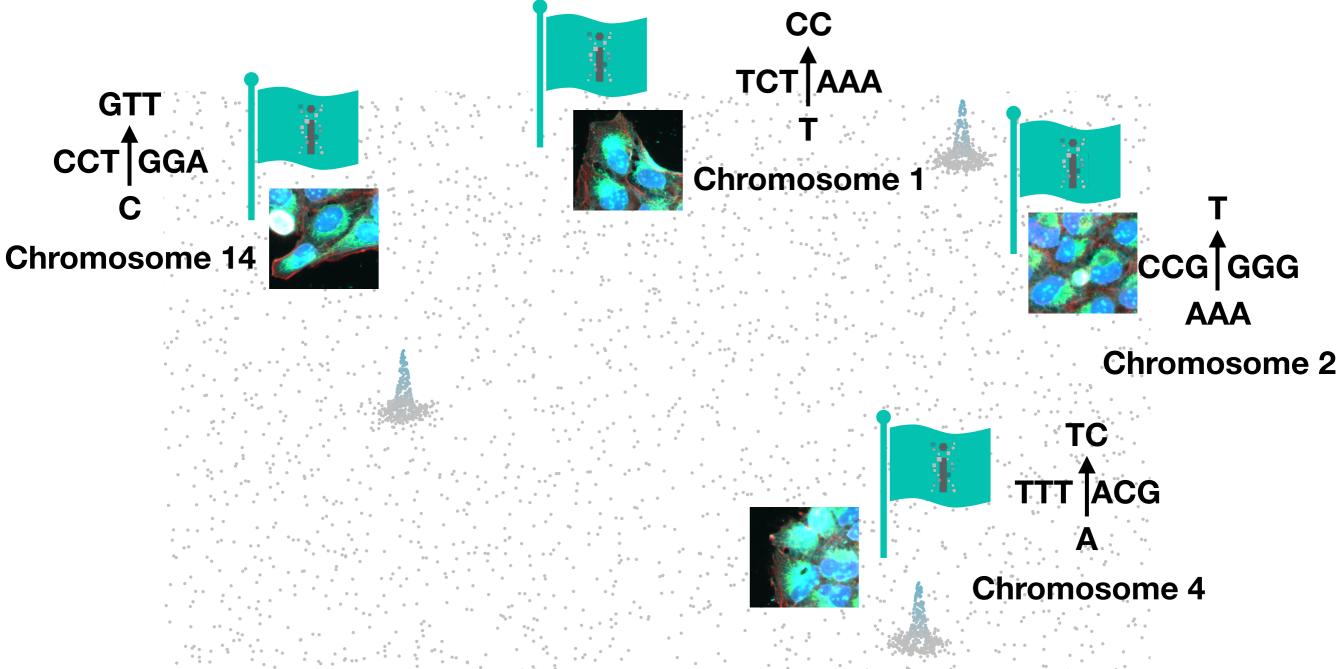


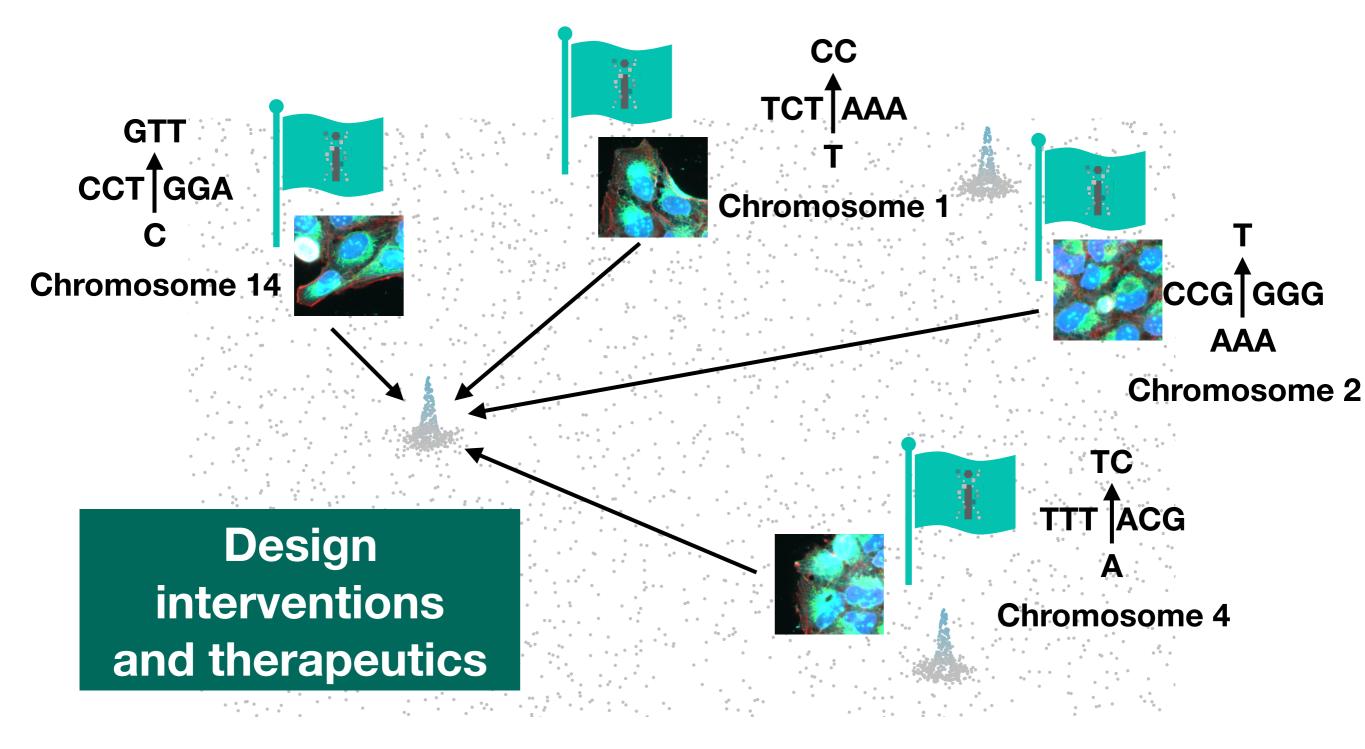


Machine Learning







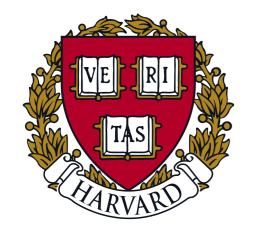


The future is **biology + computation**

Thank you!

Thank you!

Thank you!



Debora Marks John Ingraham Chris Sander Andrew Kruse Aashish Manglik Conor McMahon June Shin Aaron Kollasch

Anna Green Thomas Hopf Charlotta Scharfe **Benni Schubert** Eli Weinstein Kelly Brock Rohan Maddamsetti David Ding Hailey Cambra Agnes Toth-Petroczy Perry Palmedo Frank Poelwijk Nick Gauthier Jennie Epp

Sam Deutsch

insitro Daphne Koller

