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ATGAGTATTCAACATTTCCGTGT
CGCCCTTATTCCCTTTTTTGCGG
CATTTTGCCTTCCTGTTTTTGCT
CACCCAGAAACGCTGGTGAAAGT
AAAAGATGCTGAAGATCAGTTGG
GTGCACGAGTGGGTTACATCGAA
CTGGATCTCAACAGCGGTAAGAT
CCTTGAGAGTTTTCGCCCCGAAG
AACGTTTTCCAATGATGAGCACT
TTTAAAGTTCTGCTATGTGGCGC
GGTATTATCCCGTGTTGACGCCG
GGCAAGAGCAACTCGGTCGCCGC
ATACACTATTCTCAGAATGACTT
GGTTGAGTACTCACCAGTCACAG
AAAAGCATCTTACGGATGGCATG
ACAGTAAGAGAATTATGCAGTGC
TGCCATAACCATGAGTGATAACA
CTGCGGCCAACTTACTTCTGACA
ACGATCGGAGGACCGAAGGAGCT
AACCGCTTTTTTGCACAACATGG
GGGATCATGTAACTCGCCTTGAT
CGTTGGGAACCGGAGCTGAATGA
AGCCATACCAAACGACGAG...

DNA

The Central Dogma of Biology

4 different 
bases



ATGAGTATTCAACATTTCCGTGT
CGCCCTTATTCCCTTTTTTGCGG
CATTTTGCCTTCCTGTTTTTGCT
CACCCAGAAACGCTGGTGAAAGT
AAAAGATGCTGAAGATCAGTTGG
GTGCACGAGTGGGTTACATCGAA
CTGGATCTCAACAGCGGTAAGAT
CCTTGAGAGTTTTCGCCCCGAAG
AACGTTTTCCAATGATGAGCACT
TTTAAAGTTCTGCTATGTGGCGC
GGTATTATCCCGTGTTGACGCCG
GGCAAGAGCAACTCGGTCGCCGC
ATACACTATTCTCAGAATGACTT
GGTTGAGTACTCACCAGTCACAG
AAAAGCATCTTACGGATGGCATG
ACAGTAAGAGAATTATGCAGTGC
TGCCATAACCATGAGTGATAACA
CTGCGGCCAACTTACTTCTGACA
ACGATCGGAGGACCGAAGGAGCT
AACCGCTTTTTTGCACAACATGG
GGGATCATGTAACTCGCCTTGAT
CGTTGGGAACCGGAGCTGAATGA
AGCCATACCAAACGACGAG...

RNADNA
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AUGAGUAUUCAACAUUUCCGUGU
CGCCCUUAUUCCCUUUUUUGCGG
CAUUUUGCCUUCCUGUUUUUGCU
CACCCAGAAACGCUGGUGAAAGU
AAAAGAUGCUGAAGAUCAGUUGG
GUGCACGAGUGGGUUACAUCGAA
CUGGAUCUCAACAGCGGUAAGAU
CCUUGAGAGUUUUCGCCCCGAAG
AACGUUUUCCAAUGAUGAGCACU
UUUAAAGUUCUGCUAUGUGGCGC
GGUAUUAUCCCGUGUUGACGCCG
GGCAAGAGCAACUCGGUCGCCGC
AUACACUAUUCUCAGAAUGACUU
GGUUGAGUACUCACCAGUCACAG
AAAAGCAUCUUACGGAUGGCAUG
ACAGUAAGAGAAUUAUGCAGUGC
UGCCAUAACCAUGAGUGAUAACA
CUGCGGCCAACUUACUUCUGACA
ACGAUCGGAGGACCGAAGGAGCU
AACCGCUUUUUUGCACAACAUGG
GGGAUCAUGUAACUCGCCUUGAU
CGUUGGGAACCGGAGCUGAAUGA
AGCCAUACCAAACGACGAG...

ATGAGTATTCAACATTTCCGTGT
CGCCCTTATTCCCTTTTTTGCGG
CATTTTGCCTTCCTGTTTTTGCT
CACCCAGAAACGCTGGTGAAAGT
AAAAGATGCTGAAGATCAGTTGG
GTGCACGAGTGGGTTACATCGAA
CTGGATCTCAACAGCGGTAAGAT
CCTTGAGAGTTTTCGCCCCGAAG
AACGTTTTCCAATGATGAGCACT
TTTAAAGTTCTGCTATGTGGCGC
GGTATTATCCCGTGTTGACGCCG
GGCAAGAGCAACTCGGTCGCCGC
ATACACTATTCTCAGAATGACTT
GGTTGAGTACTCACCAGTCACAG
AAAAGCATCTTACGGATGGCATG
ACAGTAAGAGAATTATGCAGTGC
TGCCATAACCATGAGTGATAACA
CTGCGGCCAACTTACTTCTGACA
ACGATCGGAGGACCGAAGGAGCT
AACCGCTTTTTTGCACAACATGG
GGGATCATGTAACTCGCCTTGAT
CGTTGGGAACCGGAGCTGAATGA
AGCCATACCAAACGACGAG...
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Protein

AUGAGUAUUCAACAUUUCCGUGU
CGCCCUUAUUCCCUUUUUUGCGG
CAUUUUGCCUUCCUGUUUUUGCU
CACCCAGAAACGCUGGUGAAAGU
AAAAGAUGCUGAAGAUCAGUUGG
GUGCACGAGUGGGUUACAUCGAA
CUGGAUCUCAACAGCGGUAAGAU
CCUUGAGAGUUUUCGCCCCGAAG
AACGUUUUCCAAUGAUGAGCACU
UUUAAAGUUCUGCUAUGUGGCGC
GGUAUUAUCCCGUGUUGACGCCG
GGCAAGAGCAACUCGGUCGCCGC
AUACACUAUUCUCAGAAUGACUU
GGUUGAGUACUCACCAGUCACAG
AAAAGCAUCUUACGGAUGGCAUG
ACAGUAAGAGAAUUAUGCAGUGC
UGCCAUAACCAUGAGUGAUAACA
CUGCGGCCAACUUACUUCUGACA
ACGAUCGGAGGACCGAAGGAGCU
AACCGCUUUUUUGCACAACAUGG
GGGAUCAUGUAACUCGCCUUGAU
CGUUGGGAACCGGAGCUGAAUGA
AGCCAUACCAAACGACGAG...

ATGAGTATTCAACATTTCCGTGT
CGCCCTTATTCCCTTTTTTGCGG
CATTTTGCCTTCCTGTTTTTGCT
CACCCAGAAACGCTGGTGAAAGT
AAAAGATGCTGAAGATCAGTTGG
GTGCACGAGTGGGTTACATCGAA
CTGGATCTCAACAGCGGTAAGAT
CCTTGAGAGTTTTCGCCCCGAAG
AACGTTTTCCAATGATGAGCACT
TTTAAAGTTCTGCTATGTGGCGC
GGTATTATCCCGTGTTGACGCCG
GGCAAGAGCAACTCGGTCGCCGC
ATACACTATTCTCAGAATGACTT
GGTTGAGTACTCACCAGTCACAG
AAAAGCATCTTACGGATGGCATG
ACAGTAAGAGAATTATGCAGTGC
TGCCATAACCATGAGTGATAACA
CTGCGGCCAACTTACTTCTGACA
ACGATCGGAGGACCGAAGGAGCT
AACCGCTTTTTTGCACAACATGG
GGGATCATGTAACTCGCCTTGAT
CGTTGGGAACCGGAGCTGAATGA
AGCCATACCAAACGACGAG...
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MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW
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AUGAGUAUUCAACAUUUCCGUGU
CGCCCUUAUUCCCUUUUUUGCGG
CAUUUUGCCUUCCUGUUUUUGCU
CACCCAGAAACGCUGGUGAAAGU
AAAAGAUGCUGAAGAUCAGUUGG
GUGCACGAGUGGGUUACAUCGAA
CUGGAUCUCAACAGCGGUAAGAU
CCUUGAGAGUUUUCGCCCCGAAG
AACGUUUUCCAAUGAUGAGCACU
UUUAAAGUUCUGCUAUGUGGCGC
GGUAUUAUCCCGUGUUGACGCCG
GGCAAGAGCAACUCGGUCGCCGC
AUACACUAUUCUCAGAAUGACUU
GGUUGAGUACUCACCAGUCACAG
AAAAGCAUCUUACGGAUGGCAUG
ACAGUAAGAGAAUUAUGCAGUGC
UGCCAUAACCAUGAGUGAUAACA
CUGCGGCCAACUUACUUCUGACA
ACGAUCGGAGGACCGAAGGAGCU
AACCGCUUUUUUGCACAACAUGG
GGGAUCAUGUAACUCGCCUUGAU
CGUUGGGAACCGGAGCUGAAUGA
AGCCAUACCAAACGACGAG...

ATGAGTATTCAACATTTCCGTGT
CGCCCTTATTCCCTTTTTTGCGG
CATTTTGCCTTCCTGTTTTTGCT
CACCCAGAAACGCTGGTGAAAGT
AAAAGATGCTGAAGATCAGTTGG
GTGCACGAGTGGGTTACATCGAA
CTGGATCTCAACAGCGGTAAGAT
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AACGTTTTCCAATGATGAGCACT
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ACGATCGGAGGACCGAAGGAGCT
AACCGCTTTTTTGCACAACATGG
GGGATCATGTAACTCGCCTTGAT
CGTTGGGAACCGGAGCTGAATGA
AGCCATACCAAACGACGAG...
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GGGAUCAUGUAACUCGCCUUGAU
CGUUGGGAACCGGAGCUGAAUGA
AGCCAUACCAAACGACGAG...

ATGAGTATTCAACATTTCCGTGT
CGCCCTTATTCCCTTTTTTGCGG
CATTTTGCCTTCCTGTTTTTGCT
CACCCAGAAACGCTGGTGAAAGT
AAAAGATGCTGAAGATCAGTTGG
GTGCACGAGTGGGTTACATCGAA
CTGGATCTCAACAGCGGTAAGAT
CCTTGAGAGTTTTCGCCCCGAAG
AACGTTTTCCAATGATGAGCACT
TTTAAAGTTCTGCTATGTGGCGC
GGTATTATCCCGTGTTGACGCCG
GGCAAGAGCAACTCGGTCGCCGC
ATACACTATTCTCAGAATGACTT
GGTTGAGTACTCACCAGTCACAG
AAAAGCATCTTACGGATGGCATG
ACAGTAAGAGAATTATGCAGTGC
TGCCATAACCATGAGTGATAACA
CTGCGGCCAACTTACTTCTGACA
ACGATCGGAGGACCGAAGGAGCT
AACCGCTTTTTTGCACAACATGG
GGGATCATGTAACTCGCCTTGAT
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AGCCATACCAAACGACGAG...

RNADNA

The Central Dogma of Biology

20 different 
amino acids



MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
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AUGAGUAUUCAACAUUUCCGUGU
CGCCCUUAUUCCCUUUUUUGCGG
CAUUUUGCCUUCCUGUUUUUGCU
CACCCAGAAACGCUGGUGAAAGU
AAAAGAUGCUGAAGAUCAGUUGG
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AAAAGCAUCUUACGGAUGGCAUG
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UGCCAUAACCAUGAGUGAUAACA
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CGCCCTTATTCCCTTTTTTGCGG
CATTTTGCCTTCCTGTTTTTGCT
CACCCAGAAACGCTGGTGAAAGT
AAAAGATGCTGAAGATCAGTTGG
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ACGATCGGAGGACCGAAGGAGCT
AACCGCTTTTTTGCACAACATGG
GGGATCATGTAACTCGCCTTGAT
CGTTGGGAACCGGAGCTGAATGA
AGCCATACCAAACGACGAG...
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Understanding 
disease

“Does this mutation 
cause cancer?”

Biomedicine

“Is this antibody 
stable in a patient?”

Bioengineering

“Can this microbe be 
used to create 

vitamins?”
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Mutation effect prediction 
 is hard

*Nonlinear interactions*

*Noisy*
*Sparsely sampled*

*Effect not measured*

*Confounders*
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MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Protein Structure Function
ATGAGTATTCAACATTTCCGTGT
CGCCCTTATTCCCTTTTTTGCGG
CATTTTGCCTTCCTGTTTTTGCT
CACCCAGAAACGCTGGTGAAAGT
AAAAGATGCTGAAGATCAGTTGG
GTGCACGAGTGGGTTACATCGAA
CTGGATCTCAACAGCGGTAAGAT
CCTTGAGAGTTTTCGCCCCGAAG
AACGTTTTCCAATGATGAGCACT
TTTAAAGTTCTGCTATGTGGCGC
GGTATTATCCCGTGTTGACGCCG
GGCAAGAGCAACTCGGTCGCCGC
ATACACTATTCTCAGAATGACTT
GGTTGAGTACTCACCAGTCACAG
AAAAGCATCTTACGGATGGCATG
ACAGTAAGAGAATTATGCAGTGC
TGCCATAACCATGAGTGATAACA
CTGCGGCCAACTTACTTCTGACA
ACGATCGGAGGACCGAAGGAGCT
AACCGCTTTTTTGCACAACATGG
GGGATCATGTAACTCGCCTTGAT
CGTTGGGAACCGGAGCTGAATGA
AGCCATACCAAACGACGAG...

DNA

RNA



Part I:  
Genotype -> Phenotype  

in proteins 

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Protein Structure Function
ATGAGTATTCAACATTTCCGTGT
CGCCCTTATTCCCTTTTTTGCGG
CATTTTGCCTTCCTGTTTTTGCT
CACCCAGAAACGCTGGTGAAAGT
AAAAGATGCTGAAGATCAGTTGG
GTGCACGAGTGGGTTACATCGAA
CTGGATCTCAACAGCGGTAAGAT
CCTTGAGAGTTTTCGCCCCGAAG
AACGTTTTCCAATGATGAGCACT
TTTAAAGTTCTGCTATGTGGCGC
GGTATTATCCCGTGTTGACGCCG
GGCAAGAGCAACTCGGTCGCCGC
ATACACTATTCTCAGAATGACTT
GGTTGAGTACTCACCAGTCACAG
AAAAGCATCTTACGGATGGCATG
ACAGTAAGAGAATTATGCAGTGC
TGCCATAACCATGAGTGATAACA
CTGCGGCCAACTTACTTCTGACA
ACGATCGGAGGACCGAAGGAGCT
AACCGCTTTTTTGCACAACATGG
GGGATCATGTAACTCGCCTTGAT
CGTTGGGAACCGGAGCTGAATGA
AGCCATACCAAACGACGAG...

DNA

RNA



Mutations impact protein function



Mutations impact protein function
MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Sequence



Mutations impact protein function
MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Sequence Structure

E!L



Mutations impact protein function
MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Sequence Structure Function

E!L



Mutations impact protein function
MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Sequence Structure Function

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

E!L



Mutations impact protein function
MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Sequence Structure Function

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

E!L

E!I



Mutations impact protein function
MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Sequence Structure Function

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

E!L

E!I

?? ?

?? ?



β-lactamase sequence family

>NC_000913.3 Escherichia coli str. K-12 substr. MG1655, complete genome
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGCTTCTGAACTG
GTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAATATAGGCATAGCGCACAGAC
AGATAAAAATTACAGAGTACACAACATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGT
AACGGTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAGCCCGCACCTGACAGTGCGGGCTTTTTTTTTCGACCAAAGG
TAACGAGGTAACAACCATGCGAGTGTTGAAGTTCGGCGGTACATCAGTGGCAAATGCAGAACGTTTTCTGCGTGTTGCCG
ATATTCTGGAAAGCAATGCCAGGCAGGGGCAGGTGGCCACCGTCCTCTCTGCCCCCGCCAAAATCACCAACCACCTGGTG
GCGATGATTGAAAAAACCATTAGCGGCCAGGATGCTTTACCCAATATCAGCGATGCCGAACGTATTTTTGCCGAACTTTT
GACGGGACTCGCCGCCGCCCAGCCGGGGTTCCCGCTGGCGCAATTGAAAACTTTCGTCGATCAGGAATTTGCCCAAATAA
AACATGTCCTGCATGGCATTAGTTTGTTGGGGCAGTGCCCGGATAGCATCAACGCTGCGCTGATTTGCCGTGGCGAGAAA
ATGTCGATCGCCATTATGGCCGGCGTATTAGAAGCGCGCGGTCACAACGTTACTGTTATCGATCCGGTCGAAAAACTGCT
GGCAGTGGGGCATTACCTCGAATCTACCGTCGATATTGCTGAGTCCACCCGCCGTATTGCGGCAAGCCGCATTCCGGCTG
ATCACATGGTGCTGATGGCAGGTTTCACCGCCGGTAATGAAAAAGGCGAACTGGTGGTGCTTGGACGCAACGGTTCCGAC
TACTCTGCTGCGGTGCTGGCTGCCTGTTTACGCGCCGATTGTTGCGAGATTTGGACGGACGTTGACGGGGTCTATACCTG
CGACCCGCGTCAGGTGCCCGATGCGAGGTTGTTGAAGTCGATGTCCTACCAGGAAGCGATGGAGCTTTCCTACTTCGGCG
CTAAAGTTCTTCACCCCCGCACCATTACCCCCATCGCCCAGTTCCAGATCCCTTGCCTGATTAAAAATACCGGAAATCCT
CAAGCACCAGGTACGCTCATTGGTGCCAGCCGTGATGAAGACGAATTACCGGTCAAGGGCATTTCCAATCTGAATAACAT
GGCAATGTTCAGCGTTTCTGGTCCGGGGATGAAAGGGATGGTCGGCATGGCGGCGCGCGTCTTTGCAGCGATGTCACGCG
CCCGTATTTCCGTGGTGCTGATTACGCAATCATCTTCCGAATACAGCATCAGTTTCTGCGTTCCACAAAGCGACTGTGTG
CGAGCTGAACGGGCAATGCAGGAAGAGTTCTACCTGGAACTGAAAGAAGGCTTACTGGAGCCGCTGGCAGTGACGGAACG
GCTGGCCATTATCTCGGTGGTAGGTGATGGTATGCGCACCTTGCGTGGGATCTCGGCGAAATTCTTTGCCGCACTGGCCC
GCGCCAATATCAACATTGTCGCCATTGCTCAGGGATCTTCTGAACGCTCAATCTCTGTCGTGGTAAATAACGATGATGCG
ACCACTGGCGTGCGCGTTACTCATCAGATGCTGTTCAATACCGATCAGGTTATCGAAGTGTTTGTGATTGGCGTCGGTGG
CGTTGGCGGTGCGCTGCTGGAGCAACTGAAGCGTCAGCAAAGCTGGCTGAAGAATAAACATATCGACTTACGTGTCTGCG
GTGTTGCCAACTCGAAGGCTCTGCTCACCAATGTACATGGCCTTAATCTGGAAAACTGGCAGGAAGAACTGGCGCAAGCC
AAAGAGCCGTTTAATCTCGGGCGCTTAATTCGCCTCGTGAAAGAATATCATCTGCTGAACCCGGTCATTGTTGACTGCAC
TTCCAGCCAGGCAGTGGCGGATCAATATGCCGACTTCCTGCGCGAAGGTTTCCACGTTGTCACGCCGAACAAAAAGGCCA
ACACCTCGTCGATGGATTACTACCATCAGTTGCGTTATGCGGCGGAAAAATCGCGGCGTAAATTCCTCTATGACACCAAC
GTTGGGGCTGGATTACCGGTTATTGAGAACCTGCAAAATCTGCTCAATGCAGGTGATGAATTGATGAAGTTCTCCGGCAT
TCTTTCTGGTTCGCTTTCTTATATCTTCGGCAAGTTAGACGAAGGCATGAGTTTCTCCGAGGCGACCACGCTGGCGCGGG
AAATGGGTTATACCGAACCGGACCCGCGAGATGATCTTTCTGGTATGGATGTGGCGCGTAAACTATTGATTCTCGCTCGT
GAAACGGGACGTGAACTGGAGCTGGCGGATATTGAAATTGAACCTGTGCTGCCCGCAGAGTTTAACGCCGAGGGTGATGT
TGCCGCTTTTATGGCGAATCTGTCACAACTCGACGATCTCTTTGCCGCGCGCGTGGCGAAGGCCCGTGATGAAGGAAAAG
TTTTGCGCTATGTTGGCAATATTGATGAAGATGGCGTCTGCCGCGTGAAGATTGCCGAAGTGGATGGTAATGATCCGCTG
TTCAAAGTGAAAAATGGCGAAAACGCCCTGGCCTTCTATAGCCACTATTATCAGCCGCTGCCGTTGGTACTGCGCGGATA
TGGTGCGGGCAATGACGTTACAGCTGCCGGTGTCTTTGCTGATCTGCTACGTACCCTCTCATGGAAGTTAGGAGTCTGAC
ATGGTTAAAGTTTATGCCCCGGCTTCCAGTGCCAATATGAGCGTCGGGTTTGATGTGCTCGGGGCGGCGGTGACACCTGT
TGATGGTGCATTGCTCGGAGATGTAGTCACGGTTGAGGCGGCAGAGACATTCAGTCTCAACAACCTCGGACGCTTTGCCG
ATAAGCTGCCGTCAGAACCACGGGAAAATATCGTTTATCAGTGCTGGGAGCGTTTTTGCCAGGAACTGGGTAAGCAAATT
CCAGTGGCGATGACCCTGGAAAAGAATATGCCGATCGGTTCGGGCTTAGGCTCCAGTGCCTGTTCGGTGGTCGCGGCGCT
GATGGCGATGAATGAACACTGCGGCAAGCCGCTTAATGACACTCGTTTGCTGGCTTTGATGGGCGAGCTGGAAGGCCGTA
TCTCCGGCAGCATTCATTACGACAACGTGGCACCGTGTTTTCTCGGTGGTATGCAGTTGATGATCGAAGAAAACGACATC
ATCAGCCAGCAAGTGCCAGGGTTTGATGAGTGGCTGTGGGTGCTGGCGTATCCGGGGATTAAAGTCTCGACGGCAGAAGC
CAGGGCTATTTTACCGGCGCAGTATCGCCGCCAGGATTGCATTGCGCACGGGCGACATCTGGCAGGCTTCATTCACGCCT
GCTATTCCCGTCAGCCTGAGCTTGCCGCGAAGCTGATGAAAGATGTTATCGCTGAACCCTACCGTGAACGGTTACTGCCA
GGCTTCCGGCAGGCGCGGCAGGCGGTCGCGGAAATCGGCGCGGTAGCGAGCGGTATCTCCGGCTCCGGCCCGACCTTGTT
CGCTCTGTGTGACAAGCCGGAAACCGCCCAGCGCGTTGCCGACTGGTTGGGTAAGAACTACCTGCAAAATCAGGAAGGTT
TTGTTCATATTTGCCGGCTGGATACGGCGGGCGCACGAGTACTGGAAAACTAAATGAAACTCTACAATCTGAAAGATCAC
AACGAGCAGGTCAGCTTTGCGCAAGCCGTAACCCAGGGGTTGGGCAAAAATCAGGGGCTGTTTTTTCCGCACGACCTGCC
GGAATTCAGCCTGACTGAAATTGATGAGATGCTGAAGCTGGATTTTGTCACCCGCAGTGCGAAGATCCTCTCGGCGTTTA
TTGGTGATGAAATCCCACAGGAAATCCTGGAAGAGCGCGTGCGCGCGGCGTTTGCCTTCCCGGCTCCGGTCGCCAATGTT
GAAAGCGATGTCGGTTGTCTGGAATTGTTCCACGGGCCAACGCTGGCATTTAAAGATTTCGGCGGTCGCTTTATGGCACA
AATGCTGACCCATATTGCGGGTGATAAGCCAGTGACCATTCTGACCGCGACCTCCGGTGATACCGGAGCGGCAGTGGCTC
ATGCTTTCTACGGTTTACCGAATGTGAAAGTGGTTATCCTCTATCCACGAGGCAAAATCAGTCCACTGCAAGAAAAACTG
TTCTGTACATTGGGCGGCAATATCGAAACTGTTGCCATCGACGGCGATTTCGATGCCTGTCAGGCGCTGGTGAAGCAGGC
GTTTGATGATGAAGAACTGAAAGTGGCGCTAGGGTTAAACTCGGCTAACTCGATTAACATCAGCCGTTTGCTGGCGCAGA
TTTGCTACTACTTTGAAGCTGTTGCGCAGCTGCCGCAGGAGACGCGCAACCAGCTGGTTGTCTCGGTGCCAAGCGGAAAC
TTCGGCGATTTGACGGCGGGTCTGCTGGCGAAGTCACTCGGTCTGCCGGTGAAACGTTTTATTGCTGCGACCAACGTGAA
CGATACCGTGCCACGTTTCCTGCACGACGGTCAGTGGTCACCCAAAGCGACTCAGGCGACGTTATCCAACGCGATGGACG
TGAGTCAGCCGAACAACTGGCCGCGTGTGGAAGAGTTGTTCCGCCGCAAAATCTGGCAACTGAAAGAGCTGGGTTATGCA
GCCGTGGATGATGAAACCACGCAACAGACAATGCGTGAGTTAAAAGAACTGGGCTACACTTCGGAGCCGCACGCTGCCGT
AGCTTATCGTGCGCTGCGTGATCAGTTGAATCCAGGCGAATATGGCTTGTTCCTCGGCACCGCGCATCCGGCGAAATTTA
AAGAGAGCGTGGAAGCGATTCTCGGTGAAACGTTGGATCTGCCAAAAGAGCTGGCAGAACGTGCTGATTTACCCTTGCTT
TCACATAATCTGCCCGCCGATTTTGCTGCGTTGCGTAAATTGATGATGAATCATCAGTAAAATCTATTCATTATCTCAAT
CAGGCCGGGTTTGCTTTTATGCAGCCCGGCTTTTTTATGAAGAAATTATGGAGAAAAATGACAGGGAAAAAGGAGAAATT
CTCAATAAATGCGGTAACTTAGAGATTAGGATTGCGGAGAATAACAACCGCCGTTCTCATCGAGTAATCTCCGGATATCG

High-Throughput 
Data Acquisition Machine Learning+

Riesselman, A.J.*, Ingraham, J.B.* and Marks, D.S., 2018. Nat. Methods, 15, pp.816-822.



β-lactamase sequence family

GTGCGGTGATGTGTGTTGATGATCCGGTGATCCGCGAATTGTTACCGCGAGTGGGGCGTCAGACCACGACTTACGGCTTC
AGCGAAGATGCCGACGTGCGTGTAGAAGATTATCAGCAGATTGGCCCGCAGGGGCACTTTACGCTGCTGCGCCAGGACAA
AGAGCCGATGCGCGTCACCCTGAATGCGCCAGGTCGTCATAACGCGCTGAACGCCGCAGCTGCGGTTGCGGTTGCTACGG
AAGAGGGCATTGACGACGAGGCTATTTTGCGGGCGCTTGAAAGCTTCCAGGGGACTGGTCGCCGTTTTGATTTCCTCGGT
GAATTCCCGCTGGAGCCAGTGAATGGTAAAAGCGGTACGGCAATGCTGGTCGATGACTACGGCCACCACCCGACGGAAGT
GGACGCCACCATTAAAGCGGCGCGCGCAGGCTGGCCGGATAAAAACCTGGTAATGCTGTTTCAGCCGCACCGTTTTACCC
GTACGCGCGACCTGTATGATGATTTCGCCAATGTGCTGACGCAGGTTGATACCCTGTTGATGCTGGAAGTGTATCCGGCT
GGCGAAGCGCCAATTCCGGGAGCGGACAGCCGTTCGCTGTGTCGCACAATTCGTGGACGTGGGAAAATTGATCCCATTCT
GGTGCCGGATCCGGCGCGGGTAGCCGAGATGCTGGCACCGGTATTAACCGGTAACGACCTGATTCTCGTTCAGGGGGCTG
GTAATATTGGAAAAATTGCCCGTTCTTTAGCTGAAATCAAACTGAAGCCGCAAACTCCGGAGGAAGAACAACATGACTGA
TAAAATCGCGGTCCTGTTGGGTGGGACCTCCGCTGAGCGGGAAGTTTCTCTGAATTCTGGCGCAGCGGTGTTAGCCGGAC
TGCGTGAAGGCGGTATTGACGCGTATCCTGTCGACCCGAAAGAAGTCGACGTGACGCAACTGAAGTCGATGGGCTTTCAG
AAAGTGTTTATCGCGCTACACGGTCGCGGCGGTGAAGATGGTACGCTGCAGGGGATGCTCGAGCTGATGGGCTTGCCTTA
TACCGGAAGCGGAGTGATGGCATCTGCGCTTTCAATGGATAAACTACGCAGCAAACTTCTATGGCAAGGTGCCGGTTTAC
CGGTCGCGCCGTGGGTAGCGTTAACCCGCGCAGAGTTTGAAAAAGGCCTGAGCGATAAGCAGTTAGCAGAAATTTCTGCT
CTGGGTTTGCCGGTTATCGTTAAGCCGAGCCGCGAAGGTTCCAGTGTGGGAATGTCAAAAGTAGTAGCAGAAAATGCTCT
ACAAGATGCATTAAGATTGGCATTTCAGCACGATGAAGAAGTATTGATTGAAAAATGGCTAAGTGGGCCGGAGTTCACGG
TTGCGATACTCGGTGAAGAAATTTTACCGTCAATACGTATTCAACCGTCCGGAACCTTCTATGATTATGAGGCGAAGTAT
CTCTCTGATGAGACACAGTATTTCTGCCCCGCAGGTCTGGAAGCGTCACAAGAGGCCAATTTGCAGGCATTAGTGCTGAA
AGCATGGACGACGTTAGGTTGCAAAGGATGGGGACGTATTGACGTTATGCTGGACAGCGATGGACAGTTTTATCTGCTGG
AAGCCAATACCTCACCGGGTATGACCAGCCACAGCCTGGTGCCGATGGCGGCACGTCAGGCAGGTATGAGCTTCTCGCAG
TTGGTAGTACGAATTCTGGAACTGGCGGACTAATATGTCGCAGGCTGCTCTGAACACGCGAAACAGCGAAGAAGAGGTTT
CTTCTCGCCGCAATAATGGAACGCGTCTGGCGGGGATCCTTTTCCTGCTGACCGTTTTAACGACAGTGTTGGTGAGCGGC
TGGGTCGTGTTGGGCTGGATGGAAGATGCGCAACGCCTGCCGCTCTCAAAGCTGGTGTTGACCGGTGAACGCCATTACAC
ACGTAATGACGATATCCGGCAGTCGATCCTGGCATTGGGTGAGCCGGGTACCTTTATGACCCAGGATGTCAACATCATCC
AGACGCAAATAGAACAACGCCTGCCGTGGATTAAGCAGGTGAGCGTCAGAAAGCAGTGGCCTGATGAATTGAAGATTCAT
CTGGTTGAATATGTGCCGATTGCGCGGTGGAATGATCAACATATGGTAGACGCGGAAGGAAATACCTTCAGCGTGCCGCC
AGAACGCACCAGCAAGCAGGTGCTTCCAATGCTGTATGGCCCGGAAGGCAGCGCCAATGAAGTGTTGCAGGGCTATCGCG
AAATGGGGCAGATGCTGGCAAAGGACAGATTTACTCTGAAGGAAGCGGCGATGACCGCGCGGCGTTCCTGGCAGTTGACG
CTGAATAACGATATTAAGCTCAATCTTGGCCGGGGCGATACGATGAAACGTTTGGCTCGCTTTGTAGAACTTTATCCGGT
TTTACAGCAGCAGGCGCAAACCGATGGCAAACGGATTAGCTACGTTGATTTGCGTTATGACTCTGGAGCGGCAGTAGGCT
GGGCGCCCTTGCCGCCAGAGGAATCTACTCAGCAACAAAATCAGGCACAGGCAGAACAACAATGATCAAGGCGACGGACA
GAAAACTGGTAGTAGGACTGGAGATTGGTACCGCGAAGGTTGCCGCTTTAGTAGGGGAAGTTCTGCCCGACGGTATGGTC
AATATCATTGGCGTGGGCAGCTGCCCGTCGCGTGGTATGGATAAAGGCGGGGTGAACGACCTCGAATCCGTGGTCAAGTG
CGTACAACGCGCCATTGACCAGGCAGAATTGATGGCAGATTGTCAGATCTCTTCGGTATATCTGGCGCTTTCTGGTAAGC
ACATCAGCTGCCAGAATGAAATTGGTATGGTGCCTATTTCTGAAGAAGAAGTGACGCAAGAAGATGTGGAAAACGTCGTC
CATACCGCGAAATCGGTGCGTGTGCGCGATGAGCATCGTGTGCTGCATGTGATCCCGCAAGAGTATGCGATTGACTATCA
GGAAGGGATCAAGAATCCGGTAGGACTTTCGGGCGTGCGGATGCAGGCAAAAGTGCACCTGATCACATGTCACAACGATA
TGGCGAAAAACATCGTCAAAGCGGTTGAACGTTGTGGGCTGAAAGTTGACCAACTGATATTTGCCGGACTGGCATCAAGT
TATTCGGTATTGACGGAAGATGAACGTGAACTGGGTGTCTGCGTCGTCGATATCGGTGGTGGTACAATGGATATCGCCGT
TTATACCGGTGGGGCATTGCGCCACACTAAGGTAATTCCTTATGCTGGCAATGTCGTGACCAGTGATATCGCTTACGCCT
TTGGCACGCCGCCAAGCGACGCCGAAGCGATTAAAGTTCGCCACGGTTGTGCGCTGGGTTCCATCGTTGGAAAAGATGAG
AGCGTGGAAGTGCCGAGCGTAGGTGGTCGTCCGCCACGGAGTCTGCAACGTCAGACACTGGCAGAGGTGATCGAGCCGCG
CTATACCGAGCTGCTCAACCTGGTCAACGAAGAGATATTGCAGTTGCAGGAAAAGCTTCGCCAACAAGGGGTTAAACATC
ACCTGGCGGCAGGCATTGTATTAACCGGTGGCGCAGCGCAGATCGAAGGTCTTGCAGCCTGTGCTCAGCGCGTGTTTCAT
ACGCAAGTGCGTATCGGCGCGCCGCTGAACATTACCGGTTTAACGGATTATGCTCAGGAGCCGTATTATTCGACGGCGGT
GGGATTGCTTCACTATGGGAAAGAGTCACATCTTAACGGTGAAGCTGAAGTAGAAAAACGTGTTACAGCATCAGTTGGCT
CGTGGATCAAGCGACTCAATAGTTGGCTGCGAAAAGAGTTTTAATTTTTATGAGGCCGACGATGATTACGGCCTCAGGCG
ACAGGCACAAATCGGAGAGAAACTATGTTTGAACCAATGGAACTTACCAATGACGCGGTGATTAAAGTCATCGGCGTCGG
CGGCGGCGGCGGTAATGCTGTTGAACACATGGTGCGCGAGCGCATTGAAGGTGTTGAATTCTTCGCGGTAAATACCGATG
CACAAGCGCTGCGTAAAACAGCGGTTGGACAGACGATTCAAATCGGTAGCGGTATCACCAAAGGACTGGGCGCTGGCGCT
AATCCAGAAGTTGGCCGCAATGCGGCTGATGAGGATCGCGATGCATTGCGTGCGGCGCTGGAAGGTGCAGACATGGTCTT
TATTGCTGCGGGTATGGGTGGTGGTACCGGTACAGGTGCAGCACCAGTCGTCGCTGAAGTGGCAAAAGATTTGGGTATCC
TGACCGTTGCTGTCGTCACTAAGCCTTTCAACTTTGAAGGCAAGAAGCGTATGGCATTCGCGGAGCAGGGGATCACTGAA
CTGTCCAAGCATGTGGACTCTCTGATCACTATCCCGAACGACAAACTGCTGAAAGTTCTGGGCCGCGGTATCTCCCTGCT
GGATGCGTTTGGCGCAGCGAACGATGTACTGAAAGGCGCTGTGCAAGGTATCGCTGAACTGATTACTCGTCCGGGTTTGA
TGAACGTGGACTTTGCAGACGTACGCACCGTAATGTCTGAGATGGGCTACGCAATGATGGGTTCTGGCGTGGCGAGCGGT
GAAGACCGTGCGGAAGAAGCTGCTGAAATGGCTATCTCTTCTCCGCTGCTGGAAGATATCGACCTGTCTGGCGCGCGCGG
CGTGCTGGTTAACATCACGGCGGGCTTCGACCTGCGTCTGGATGAGTTCGAAACGGTAGGTAACACCATCCGTGCATTTG
CTTCCGACAACGCGACTGTGGTTATCGGTACTTCTCTTGACCCGGATATGAATGACGAGCTGCGCGTAACCGTTGTTGCG
ACAGGTATCGGCATGGACAAACGTCCTGAAATCACTCTGGTGACCAATAAGCAGGTTCAGCAGCCAGTGATGGATCGCTA
CCAGCAGCATGGGATGGCTCCGCTGACCCAGGAGCAGAAGCCGGTTGCTAAAGTCGTGAATGACAATGCGCCGCAAACTG
CGAAAGAGCCGGATTATCTGGATATCCCAGCATTCCTGCGTAAGCAAGCTGATTAAGAATTGACTGGAATTTGGGTTTCG
AGGCTCTTTGTGCTAAACTGGCCCGCCGAATGTATAGTACACTTCGGTTGGATAGGTAATTTGGCGAGATAATACGATGA

High-Throughput 
Data Acquisition Machine Learning+

Riesselman, A.J.*, Ingraham, J.B.* and Marks, D.S., 2018. Nat. Methods, 15, pp.816-822.



DNA sequencing is becoming 
very cheap and easy

https://www.youtube.com/watch?v=GUb1TZvMWsw

https://www.uniprot.org/statistics/TrEMBL
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We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 

(3)(3)
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Existing approaches Our approach (EVmutation)

Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.

https://www.youtube.com/watch?v=GUb1TZvMWsw
https://www.uniprot.org/statistics/TrEMBL


DNA sequencing is becoming 
very cheap and easy

https://www.youtube.com/watch?v=GUb1TZvMWsw
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 

(3)(3)

L PAI

�i �i �j

V

Q PAI A

N PAI A

Q GDH M

R GDK S

A ADK N

A ADK N

hi (�i) hi (�i)
Ji j(�i, �j)

L PAI V

Q PAI A

N PAI A

Q GDH M

R GDK S

A ADK N

A ADK N

Epistatic modelIndependent model

L PAI V L PAI V

Model constraints on sequences

Predict effects of mutations

L PI VDL PI VD

A ��D wrongly predicted neutral
ignoring sequence context

A ��D correctly predicted damaging
needs couplings to other sites

Existing approaches Our approach (EVmutation)

Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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ij i j
i j
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h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
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( ) ( ) ( )T T T
T

T Tmut
mut
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
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( ) ( ) ( )T T T
T

T Tmut
mut
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.

ADRLYMTKIHHEFEGD

©
 2

01
7 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
, p

ar
t o

f S
pr

in
ge

r 
N

at
ur

e.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.

2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
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ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
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E E( , ) log ( )
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mut
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.

ADRLYMTKIHHEFEGD

All are functional, homologous examples of Protein X

Natural evolution is an experiment, in parallel.
Assumption:

Present in database: Tolerated

Not in database: Deleterious

Sequences are found in public 
genome databases.

Lots of other examples of 
Protein X are available



Can we predict which mutation will be 
tolerable?

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Protein X



Can we predict which mutation will be 
tolerable?

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Protein X



Can we predict which mutation will be 
tolerable?

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Protein X

E!L

©
 2

01
7 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
, p

ar
t o

f S
pr

in
ge

r 
N

at
ur

e.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.

2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.

How can we formulate 
this problem?

?? ?
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Founded by Daphne Koller in 2018

Create a new paradigm for drug development 
that uses high-quality data and data-driven models  

to design novel, safe, and effective therapies 
that help more people, faster, and at a lower cost.
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for complex diseases
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We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
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ij i j
i j
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�
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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One experiment 
can test 

thousands of 
biological 

hypotheses
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Design 
interventions  

and therapeutics
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