Statistically identifying mechanisms of phage host interactions in the Nahant Collection

Joy Yang Polz Lab, MIT CSGF Review – July 13, 2018

Tiny organisms in large numbers have a large impact on our ecosystem

Barriers to lytic infection by DNA phage

- In 1 mL of sea water
 - 10⁶ bacteria
 - 10⁷ phage
- 36 million km3 of water in the top 100m of the sea
- Rare events for a single cell do not equate to rare events for the whole population
- The evolutionary arms race rapidly evolves arsenals of largely unexplored mechanisms

The Nahant Collection

Kathryn Kauffman

- Largest phylogenetically resolved phage-host cross-test
- 241 diverse phage
 - nontailed (Tecti-)
 - tailed (Podo-, Myo-, Sipho-)
- 243 hosts, ecologically differentiated
 - E. norv are free-living
 - V. cyc, large-particle specialists
 - V. tas are generalists.
- 1000 phage gene clusters
- 10,000 host gene clusters

Thesis Aims

- Aim 1: Identify novel mechanisms and infection and defense in the coastal ocean
- Aim 2: Elucidate the role of phage 2.275.O. tRNA during the infection cycle
- Aim 3: Develop curricula for engineering/ statistics outreach

Aim 1: Identifying novel mechanisms and infection and defense in the coastal ocean

Correcting for population structure is important for sifting out relevant signals from spurious correlations

Phage Protein present absent

Correcting for population structure is important for sifting out relevant signals from spurious correlations

does not infect

		∏ Phage ∬ Phylogeny
		Infection
	5. S	
tion	🛱 ;	Pha
Dired		ige P
ffect		roteir
ш		ភ
	Ordinary Least Squares	
	Effect Direction	Phage/Host
	positive	infects

negative

$$Y = X\beta + \varepsilon$$

$$cov(\varepsilon) = \Sigma$$

$$\widetilde{Y} = \widetilde{X}\beta + \widetilde{\varepsilon}$$

$$\Sigma^{-1/2}Y = \Sigma^{-1/2}X\beta + \Sigma^{-1/2}\varepsilon$$

$$cov(\widetilde{\varepsilon}) = \Sigma^{-\frac{1}{2}}cov(\varepsilon)\Sigma^{-\frac{1}{2}'}$$

$$= \Sigma^{-\frac{1}{2}}\Sigma\Sigma^{-\frac{1}{2}'}$$

$$= I$$

Correcting for population structure is important for sifting out relevant signals from spurious correlations

Generalizing the analysis to the 2D matrix allows us to model interacting phage/host systems

 $Y \sim Bern(\mu)$ $logit(vec(\mu)) = \beta_0$ $+ X_v \beta_v + X_h \beta_h$ $+ X_{vh} \beta_{vh}$

10,000,000 interaction terms

$$Y \sim Bern(\mu)$$
$$logit(vec(\mu)) = \beta_0$$
$$+ X_v \beta_v + X_h \beta_h$$
$$+ X_{vh} \beta_{vh}$$

- 1000 virus proteins
- 10,000 host proteins
- 10,000,000 interaction terms
- Y is 243 x 241 ~ 58,000
- To calculate M, predictors ~58,000 × 10,000,000
- ~4.7 TB
- Sparse encoding is \sim 4 GB
- How do we interpret 10,000,000 coefficients?

Generalizing the analysis to the 2D matrix allows us to model interacting phage/host systems

But how do we interpret the coefficients?

6.3 econuclease, Naminal resolvase-like domain(1):1][Acta domain(1):1][Acta ecobic riboru 6.3 econuclease, Naminal resolvase-like domain(1):1][E-pyruor) iterahydroption syntase 6.4 econuclease, Naminal resolvase-like domain(1):1][E-pyruor) iterahydroption syntase (E-20-CoA Naco)[1][[Multi erdomicales(2):1][[Rostamum-like phosphosetarase] (Baderetophage P22, NinX3):1][[Multi erdomicales(2):1][[Rostamum-like phosphosetarase] (E-3 econuclease(1):1][[Multi erdomicales(2):1][[Rostamum-like phosphosetarase] (E-3 econuclease), Naternial resolvase-like domain(1):1][[Actamum-like phosphosetarase] (E-3 econuclease), Naternial resolvase-like domain(1):1][[Actamum-like phosphosetarase] (E-3 econuclease), Naternial resolvase-like domain(1):1][[Actamum-like (E-3) econuclease] (E-3) econuclea	 Free entry locations with subscription and s	 Prodicis of fundamental matrix on DUT39871(3). Prodicis of fundamental matrix on DUT39871(3): Prodicis of fundamental matrix on prodicis of the manubadient (in the membrane). Region of a membrane-bound prodint prodicated to be embledded in the membrane (3): Region of a membrane-bound prodint prodicated to be embledded in the membrane (2): LPXTC_amotion: LPXTG and watching prodicated to be embledded in the membrane (2): 	 P22 tail accessory factor(3):1 Regulator of dhomeaume condensation (RCC1) repeat(2):1[Region of a membrane-bound face of a home condensation (RCC1) repeat(2):1[Region of a membrane-bound face of the text of a second accessor of a second face of the text of text of	 DS N terminal liker (18):11Protein of uniewon function (DUF3310)(18):11T5oct172 domma(18) Region of a membrane-bound protein predicted to be embedded in the membrane. (19):1 Region of a membrane-bound protein predicted to be embedded in the membrane (19):1 Prokerpolic membrane-bound protein predicted to be embedded in the membrane (19):1 	Cold-shock' DNA-binding domain(5):1[Anaerobic ribonucleoside-triphosphale reductase(5);	 DOM, polymerase type B, organeliar and vial(7):1[Fbhimogen binding protein (7):1[L2XTG Erne beholding domain of primase-heliciase(8):1 Bacterial (9-like domain (group 2)(6):1[BRCT domain(6):1[Carbohydrate-binding-like (solid)
And a state of the	Cargon d a managementante location	Control of the second s	A construction of the second s	CENDERATION INVESTIGATION	Characteristics and memory control of the second se	A constraint of the second of

Geometric interpretation of projecting phage and hosts into the same space

 $Y \sim Bern(\mu)$ $logit(\mu) = \langle A'V', B'H' \rangle$

Idea from Philippe Rigollet

Idea: interpret orthogonal components?

Taking a step back, goal is to generate testable hypotheses, so we need still more intuitive ways to interact with the data

Demo

Summary

• Correcting for phylogenetic confounding allows us to pick out defense mechanisms that would otherwise be lost among spurious correlations

Summary

- Correcting for phylogenetic confounding allows us to pick out defense mechanisms that would otherwise be lost among spurious correlations
- The multivariate model allows us to view the problem from a prediction perspective, and also helps us think about putative protein interactions between phage and host

Summary

- Correcting for phylogenetic confounding allows us to pick out defense mechanisms that would otherwise be lost among spurious correlations
- The multivariate model allows us to view the problem from a prediction perspective, and also helps us think about putative protein interactions between phage and host
- Visualizing the data and results in an interactive manner, allows us to generate hypotheses about putative receptors and defense mechanisms

Aim 3: Developing modules for engineering/ statistical education Incorporating statistics into Environmental Engineering for 8th Graders

 Building simple air quality sensors and interpreting the data collected (with Josh Moss/Kroll Lab)

Incorporating statistics into Environmental Engineering for 8th Graders

- Building simple air quality sensors and interpreting the data collected (with Josh Moss/Kroll Lab)
- Experimental design applied to building wind turbines (with Ava Waitz)

Incorporating statistics into Environmental Engineering for 8th Graders

- Building simple air quality sensors and interpreting the data collected (with Josh Moss/Kroll Lab)
- Experimental design applied to building wind turbines (with Ava Waitz)
- Interpreting maps solar irradiance, rainfall, soil types, crop yields
- Population modeling using game theory prisoner's dilemma/rock-paper-scissors/etc
- Etc. (lots of guidance from Anjuli Jain)

Thank You

Advisors

Martin Polz Libusha Kelly

Polz Lab

Kathryn Kauffman Fatima Hussain David VanInsberghe Joseph Elsherbini Annie Yu Fabiola Miranda Javier Dubert Bruno Janeiro Clovis Borges

MIT Parsons

Anjuli Jain + Really, all of Parsons

Committee

David Bartel Philippe Rigollet Jeff Gore

CSBi

Practicum Lab

Adam Arkin Harneet Rishi

