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Bacterial Biofilms

Figure: Biofilm growing on grain of sand. !

» Bacterial Biofilms are colonies of bacteria that have adhered
to a surface

» Bacteria typically cofined within a viscous layer of extracellular
polymeric substances?

'mage courtesy of the Lewis Lab at Northeastern University. Image created
by A. D'Onofrio et al.
2Hall-Stoodley et al. 2004, Nature Rev. Microbiol.




Why biofilms are important

Figure: Viscoelastic fibers in biofilm. 3

> Implicated in many bacterial infections
» Industrially, biofilm growth is a major source of corrosion

» Can also be beneficial - an important component of
bioreactors.

32005 R. M. Donlan, J. Carr



Spatial Statistical Analysis of Biofilm Data

Positions of Bacteria in Biofilm
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> Analysis of biofilm microstructure based high-resolution
microscopy data sets

» Develop a point process model based on statistical
characterization of data



Spatial Statistical Analysis of Biofilm Data
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» Comparison of dynamic moduli from statistical models to
experimental data through computer simulation®

» Paper can be found in EJAM Biofilm special issue®

*Stotsky et al. 2016, Journal of Computational Physics.
®Stotsky et al. 2018, European Journal of Applied Mathematics.



Point Processes

» Point processes are mappings from a probability space, 2, to
collections of points in Euclidean space

» Moments of a point process are measures
» First Moment Measure: () (B) = E[®(B)].



Estimation of the Number Density

Number density as a function of height

o 05 1 15 2 25 0 5 10 15 20 25 30
p(2) (#Points/pm®) x (pm)

» Number density defined as average number of points per
volume at each point in space



Estimation of the Pair Correlation Function

PCF of Empirical Data

Isosurfaces of g(r) = {0,0.5,1.25}

» Pair Correlation Function(PCF) defined as

(2)
p(r, r2)
= ]_
82 = L)) .
» Relative likelihood of pair of points being separated by a given

distance

» Quantifies interactions between pairs of points.



Pairwise Interaction Models

» Very common in the statistical study of fluids Hansen et al.
1990

» Probability density of a configuration of n particles is

() = 5 exp Zw: —2. 2 vkx) | (2)

i=1 j>i

» Z, closely related to the partition function of statistical
mechanics
» can often assume translation invariance and isotropicity
» ¢(r) = const
> v(ry,r) =v(lri —ra)
» For biofilm case, we assume that the process is Second order
intensity reweighted stationary (SOIRS) Baddeley et al. 2000,
Statistica Neerlandica



The Ornstein-Zernike Equation

» Used to define a function known as the direct correlation
function (DCF)

g(ri,r)—1=c(rq, r2)+/p(r3)(g((r1,r3)—1)c((r2,r3)dr3
(3)

» For isotropic, translation invariant case,

g()—1=c(r)+p / (&(r — ) = De(r)dr’  (4)

> diagonalized by Hankel transform
> HF(r)](k) =[5 f(r)rdo(kr)dr
> |nvo|ut|ve HIH[f]]=f
» For SOIRS process, assume that g(r) is isotropic, but allow
for anistropy in c(r1, r2) and variation in p(r)



Closure Relations - The Hypernetted-Chain Equation

Pair potential at z; = 4.91 Pair potential at 2, = 9.01
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» Hypernetted-Chain equation

v(ry,ra) = g(ri,r2) —1—c(ri,r2) +logg(ri, r2)



Markov-Chain Monte Carlo Methods

Metropolis-Hastings Convergence

g, (r) = goata(r) ]

0 0.5 1 15 2 25 3 35 4
Iteration Number %108

» Commonly used to simulate complicated point processes®

» Only require unnormalized probability densities

5Moller et al. 2003.



Markov-Chain Monte Carlo Methods

Metropolis-Hastings Convergence

g, () = 9para(r) I

0 0.5 1 15 2 2.5 3 3.5 4
Iteration Number %10°

» Basic Algorithm:

1.
2.

oA w

Choose a point x; € X = {x1,...,x,} at random

Propose a new location for x; at random, label the new
dataset Y

Compute the ratio a = f(Y)/f(X)

if > 1, set X + Y, otherwise X <~ Y with probability «

. Repeat 1-4 until convergence



Comparison of Characteristics

1st Neighbor
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Validation: Experimental Measurement of Dynamic Moduli

Small Amplitude Oscillatory Shear
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» G’ known as storage modulus - solid-like behavior

» G known as loss modulus - fluid-like behavior



Comparison of Dynamic Moduli
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» Similar grid-aligned simulations done in Wrobel et al. 2014,
Physics of Fluids

» Grid-aligned plus random perturbation in Alpkvist et al.
2006-08-05, Biotechnol. Bioeng.



Conclusions

» Non-uniformity increases strength of biofilm

» Pair interaction model does a good job matching
characteristics of experimental data
» Correctly choosing scale parameters in the estimators is
challenging
» LSCV yields reasonable values, but fine tuning by numerical

experimentation still needed
» More information available in the paper®, to appear in EJAM

®Stotsky et al. 2018, European Journal of Applied Mathematics.
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