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Bacterial Biofilms

Figure: Biofilm growing on grain of sand. 1

I Bacterial Biofilms are colonies of bacteria that have adhered
to a surface

I Bacteria typically cofined within a viscous layer of extracellular
polymeric substances2

1Image courtesy of the Lewis Lab at Northeastern University. Image created
by A. D’Onofrio et al.

2Hall-Stoodley et al. 2004, Nature Rev. Microbiol.



Why biofilms are important

Figure: Viscoelastic fibers in biofilm. 3

I Implicated in many bacterial infections

I Industrially, biofilm growth is a major source of corrosion

I Can also be beneficial - an important component of
bioreactors.

32005 R. M. Donlan, J. Carr



Spatial Statistical Analysis of Biofilm Data

I Analysis of biofilm microstructure based high-resolution
microscopy data sets

I Develop a point process model based on statistical
characterization of data



Spatial Statistical Analysis of Biofilm Data

I Comparison of dynamic moduli from statistical models to
experimental data through computer simulation4

I Paper can be found in EJAM Biofilm special issue5

4Stotsky et al. 2016, Journal of Computational Physics.
5Stotsky et al. 2018, European Journal of Applied Mathematics.



Point Processes

I Point processes are mappings from a probability space, Ω, to
collections of points in Euclidean space

Ω

I Moments of a point process are measures
I First Moment Measure: µ(1)(B) = E[Φ(B)].



Estimation of the Number Density

I Number density defined as average number of points per
volume at each point in space



Estimation of the Pair Correlation Function

I Pair Correlation Function(PCF) defined as

g(r1, r2) =
ρ(2)(r1, r2)

ρ(1)(r1)ρ(1)(r2)
(1)

I Relative likelihood of pair of points being separated by a given
distance

I Quantifies interactions between pairs of points.



Pairwise Interaction Models

I Very common in the statistical study of fluids Hansen et al.
1990

I Probability density of a configuration of n particles is

f (n)(xn) =
1

Zn
exp

− n∑
i=1

φ(x i )−
n∑

i=1

n∑
j>i

v(x i , x j)

 (2)

I Zn closely related to the partition function of statistical
mechanics

I can often assume translation invariance and isotropicity
I φ(r) = const
I v(r 1, r 2) = v(|r 1 − r 2|)

I For biofilm case, we assume that the process is Second order
intensity reweighted stationary (SOIRS) Baddeley et al. 2000,
Statistica Neerlandica



The Ornstein-Zernike Equation

I Used to define a function known as the direct correlation
function (DCF)

g(r1, r2)−1 = c(r1, r2)+

∫
ρ(r3)(g((r1, r3)−1)c((r2, r3)dr3

(3)

I For isotropic, translation invariant case,

g(r)− 1 = c(r) + ρ

∫
(g(|r − r ′|)− 1)c(r ′)dr ′ (4)

I diagonalized by Hankel transform
I H[f (r)](k) =

∫∞
0

f (r)rJ0(kr)dr
I involutive: H [H[f ]] = f

I For SOIRS process, assume that g(r) is isotropic, but allow
for anistropy in c(r1, r2) and variation in ρ(r)



Closure Relations - The Hypernetted-Chain Equation

I Hypernetted-Chain equation

v(r1, r2) = g(r1, r2)− 1− c(r1, r2) + log g(r1, r2)



Markov-Chain Monte Carlo Methods

I Commonly used to simulate complicated point processes6

I Only require unnormalized probability densities

6Moller et al. 2003.



Markov-Chain Monte Carlo Methods

I Basic Algorithm:
1. Choose a point x i ∈ X ≡ {x1, . . . , xn} at random
2. Propose a new location for x i at random, label the new

dataset Y
3. Compute the ratio α = f (Y )/f (X )
4. if α ≥ 1, set X ← Y , otherwise X ← Y with probability α
5. Repeat 1-4 until convergence



Comparison of Characteristics



Validation: Experimental Measurement of Dynamic Moduli
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I G ′ known as storage modulus - solid-like behavior

I G ′′ known as loss modulus - fluid-like behavior



Comparison of Dynamic Moduli

I Similar grid-aligned simulations done in Wrobel et al. 2014,
Physics of Fluids

I Grid-aligned plus random perturbation in Alpkvist et al.
2006-08-05, Biotechnol. Bioeng.



Conclusions

I Non-uniformity increases strength of biofilm

I Pair interaction model does a good job matching
characteristics of experimental data

I Correctly choosing scale parameters in the estimators is
challenging

I LSCV yields reasonable values, but fine tuning by numerical
experimentation still needed

I More information available in the paper6, to appear in EJAM

6Stotsky et al. 2018, European Journal of Applied Mathematics.
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