
Population	stability
Regulating	size	in	the	presence	of	an	adversary

Adam	Sealfon
MIT

DOE	CSGF	Program	Review,	2018

Computing	when	things	go	wrong

Cryptography Privacy

Distributed	
algorithms

Cryptography

• How	can	we	communicate	privately	so	only	the	intended	recipient	
can	read	the	message?
• How	can	we	outsource	a	computation	to	a	powerful	but	untrusted	
computer,	without	revealing	what	the	computation	is?

Data	privacy

• How	can	we	analyze	data	and	publish	conclusions	without	revealing	
sensitive	attributes	of	individual	data	records?
• What	aggregate	information	is	safe	to	reveal,	even	approximately?

Distributed	algorithms

• How	can	many	processors	coordinate	to	solve	a	problem?
• Individual	processors	may	have	limited	memory,	communication,	
processing	power,	and	access	to	input.
• Processors	may	be	unreliable,	and	the	communication	network	may	
be	prone	to	failures

Computing	in	the	presence	of	an	adversary

Cryptography Privacy

Distributed	
algorithms

Model	as	a	security	game	/	experiment

Cryptography Privacy Distributed

Population	stability

Consider	a	system	of	agents	with:
• Limited	memory	
• Limited	ability	to	communicate
• The	ability	to	reproduce	and	self-destruct
in	the	presence	of	an	adversary	that	can	delete	and	insert	additional	
agents	at	bounded	rate.

How	can	we	maintain	a	stable	population	size	close	to	target	value	N?

Population	stability—model

• Initially,	there	are	N	agents	each	with	O(log	log	N)	bits	of	memory
• Each	round,	pairs	of	agents	chosen	at	random	exchange	messages	
and	may	update	their	state
• The	adversary	may	insert	or	delete	up	to	N1/4-ε agents	per	round

The	adversary	wins on	round	i if	the	population	in	that	round	is	far	
from	N,	i.e.	either	>	(1+ε)	N	or	<	(1-ε)	N.

Population	stability—challenges

• O(log	log	N)	bits	of	memory	is	far	too	little	to	count	the	population
• No	consistent	communication	network	from	round	to	round
• Adversary	can	selectively	delete	agents,	making	leader	election	
strategies	nonviable
• Adversary	can	insert	many	agents	of	every	possible	state in	each	
round

Strategy:	variance	encoding

• Coordinate	to	sample	from	a	distribution	whose	variance	gives	an	
approximation	of	the	population	size
• Each	agent	locally	obtains	a	weak	estimate	of	the	variance	and	
decides	whether	to	replicate	or	self-destruct

Basic	fact:	if	we	flip	a	coin	𝑘 times,	the	fraction	that	land	heads	will	be	
roughly	"

#
± "

%

Local	coloring

• Each	agent	flips	a	fair	coin	𝑐 ← {0,1}.
• Look	at	the	colors	of	the	next	two	agents.
• Equal	->	split	(with	probability	1 − 1/𝑁)
• Unequal	->	self-destruct

• The	smaller	the	current	population	N’,	the	more	imbalanced	the	
distribution	of	colors,	and	the	more	likely	it	is	that	an	agent	will	split.

N’	small:	

c=0
c=1

Local	coloring

• Each	agent	flips	a	fair	coin	𝑐 ← {0,1}.
• Look	at	the	colors	of	the	next	two	agents.
• Equal	->	split	(with	probability	1 − 1/𝑁)
• Unequal	->	self-destruct

• The	smaller	the	current	population	N’,	the	more	imbalanced	the	
distribution	of	colors,	and	the	more	likely	it	is	that	an	agent	will	split.

N’	large:	

c=0 c=1

Clustered	coloring

• Only	 𝑁 agents	choose	random	colors,	and	each	shares	its	color	with	
𝑁 additional	agents

• Look	at	the	colors	of	the	next	two	agents.
• Equal	->	split	(with	probability	1 − 1/ 𝑁)
• Unequal	->	self-destruct

• Strategy	can	be	implemented	in	low	memory
• This	amplifies	the	signal	enough	to	preserve	the	population	size

Conclusion

• This	protocol	robustly	maintains	a	stable	population	size	with:
• O(log	log	N)	bits	of	memory	per	agent
• 3-bit	messages
• O(N1/4-ε)	adversarial	insertions	or	deletions	per	round

• What	other	invariant	properties	can	we	maintain	robustly?
• How	can	we	maintain	a	stable	population	size	in	other	models,	e.g.	
network-based	communication?
• Can	we	use	these	ideas	to	obtain	more	robust	protocols	for	
approximate	counting?

Acknowledgements

• Shafi Goldwasser
• Rafail Ostrovsky and	Alessandra	Scafuro
• Aydın Buluç and Ariful Azad
• DOE	CSGF	and Krell

