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Proteins are the 
workhorses of biology

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Protein Structure Function
ATGAGTATTCAACATTTCCGTGT
CGCCCTTATTCCCTTTTTTGCGG
CATTTTGCCTTCCTGTTTTTGCT
CACCCAGAAACGCTGGTGAAAGT
AAAAGATGCTGAAGATCAGTTGG
GTGCACGAGTGGGTTACATCGAA
CTGGATCTCAACAGCGGTAAGAT
CCTTGAGAGTTTTCGCCCCGAAG
AACGTTTTCCAATGATGAGCACT
TTTAAAGTTCTGCTATGTGGCGC
GGTATTATCCCGTGTTGACGCCG
GGCAAGAGCAACTCGGTCGCCGC
ATACACTATTCTCAGAATGACTT
GGTTGAGTACTCACCAGTCACAG
AAAAGCATCTTACGGATGGCATG
ACAGTAAGAGAATTATGCAGTGC
TGCCATAACCATGAGTGATAACA
CTGCGGCCAACTTACTTCTGACA
ACGATCGGAGGACCGAAGGAGCT
AACCGCTTTTTTGCACAACATGG
GGGATCATGTAACTCGCCTTGAT
CGTTGGGAACCGGAGCTGAATGA
AGCCATACCAAACGACGAG...

DNA

RNA

4 different 
bases

20 different 
amino acids



Mutations impact protein function
MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW

Sequence Structure Function

MSIQHFRVALIPFFAAFCLPVFA
HPETLVKVKDAEDQLGARVGYIE
LDLNSGKILESFRPEERFPMMST
FKVLLCGAVLSRVDAGQEQLGRR
IHYSQNDLVEYSPVTEKHLTDGM
TVRELCSAAITMSDNTAANLLLT
TIGGPKELTAFLHNMGDHVTRLD
RWEPELNEAIPNDERDTTMPAAM
ATTLRKLLTGELLTLASRQQLID
WMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKP
SRIVVIYTTGSQATMDERNRQIA
EIGASLIKHW
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Mutation effect prediction 
is important

Understanding 
disease

“Does this mutation 
cause cancer?”

Bioengineering

“Will this protein digest 
wood better for 

biofuels?”

Biomedicine

“Is this antibody 
stable in a patient?”



State of art methods for 
measuring mutation effects  

selection

Compare ratio of sequences before and after selection 

Input
Pooled mutated 

sequences 

MSIQTFRVALIPFF
MSIQHFRVALIPFF
MSIQYFRVALIPFF
MSIQRFRVALIPFF
MSIQVFRVALIPFF
MSIQCFRVALIPFF
MSIQGFRVALIPFF
MSIQIFRVALIPFF
MSIQLFRVALIPFF
MSIQVFRVALIPFF

Output:
Pooled mutated 

sequences 

MSIQHFRVALIPFF
MSIQHFRVALIPFF
MSIQYFRVALIPFF
MSIQHFRVALIPFF
MSIQYFRVALIPFF
MSIQHFRVALIPFF
MSIQHFRVALIPFF
MSIQHFRVALIPFF
MSIQYFRVALIPFF
MSIQHFRVALIPFF



McLaughlin Jr, R.N., Poelwijk, F.J., Raman, A., Gosal, W.S. and Ranganathan, R., 2012. The 
spatial architecture of protein function and adaptation. Nature, 491(7422), pp.138-142.
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Understanding the effects of 
mutations is important
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There has to be a better 
way…

with computers!

https://www.extremetech.com/extreme/99413-titan-supercomputer-38400-processor-20-petaflop-successor-to-jaguar 
http://ichef.bbci.co.uk/wwfeatures/wm/live/1280_640/images/live/p0/10/76/p01076fr.jpg 
https://6lli539m39y3hpkelqsm3c2fg-wpengine.netdna-ssl.com/wp-content/uploads/2017/04/Cori-NERSC-405x228.jpg 
https://6lli539m39y3hpkelqsm3c2fg-wpengine.netdna-ssl.com/wp-content/uploads/2016/12/aurora-675x380.jpg 
https://cnet3.cbsistatic.com/img/TaF4Ubl5p3mWfcoEtblXK-QE8w8=/670x503/2018/06/08/06b0304d-1fc5-428a-9599-e76140cc03ff/summit-supercomputer-long-shot.jpg 
https://3c1703fe8d.site.internapcdn.net/newman/csz/news/800/2016/slimmingdown.jpg 
https://www.extremetech.com/wp-content/uploads/2013/01/Hopper1-348x196.jpg 
https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRg9avPn1sx2pNCQpRbisqm1cnROZqUFOT_KF7AgKSIwBJvjf7Q 
https://c1.staticflickr.com/6/5599/31681202785_24374e416b_b.jpg
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 

(3)(3)

L PAI

�i �i �j

V

Q PAI A

N PAI A

Q GDH M

R GDK S

A ADK N

A ADK N

hi (�i) hi (�i)
Ji j(�i, �j)

L PAI V

Q PAI A

N PAI A

Q GDH M

R GDK S

A ADK N

A ADK N

Epistatic modelIndependent model

L PAI V L PAI V

Model constraints on sequences

Predict effects of mutations

L PI VDL PI VD

A ��D wrongly predicted neutral
ignoring sequence context

A ��D correctly predicted damaging
needs couplings to other sites

Existing approaches Our approach (EVmutation)

Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 
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the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
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model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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( )

( ) ( ) ( )T T T
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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Should we stop there?
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A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 
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Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 
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The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 
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Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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2  ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

We model the evolutionary process that has produced each family 
as a sequence generator at equilibrium that produces a sequence S 
with probability P(S) as 

P
Z

E( ) exp{ ( )} ( )T T� 1 1

Different parametric forms of the ‘energy’ function E(S) enable 
the model to capture different types of constraints on the sequences 
(epistatic or not) and Z normalizes the distribution to sum to one 
over all possible sequences of a fixed length. E(S) may be thought 
of as a (negative) energy of a model from statistical physics or as 
proportional to the scaled fitness NeF in toy equilibrium models of 
population genetics49. We use an energy function E(S) with two types 
of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and 
site-specific constraints reflecting bias toward or away from specific 
amino acids or nucleotides at each position. The total energy for a 
specific sequence E(S) is the sum of coupling terms Jij between every 
pair of residues and a sum of site-wise bias terms hi (fields), 

E i i
i

ij i j
i j

( ) ( ) ( , ) ( )T T T T� �£ £
�

h J 2

Combining the sequence generator model (equation (1)) with our 
energy function (equation (2)) produces a model that is known as a 
pairwise undirected graphical model in computer science and a Potts 

(1)(1)

(2)(2)

model in statistical physics. When fit to data, these models explain 
the global correlations observed between variables in a system in 
terms of direct pairwise interactions Jij that are typically simpler and 
more localized. Determining these interactions involves simultane-
ous accounting for all possible couplings between all pairs of posi-
tions, which is not possible with local measures of correlation such 
as ‘mutual information’50. When models of this form are fit to natural 
sequence families, the magnitudes of the Jij terms have consistently 
predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41,43,51,52.

We applied these models to make sequence-specific predic-
tions about the relative favorability of mutations. Starting from a 
multiple alignment of a sequence family, we estimated the site and  
coupling parameters h and J using regularized maximum pseudo-
likelihood40,53–56. After the parameters were inferred, we quantified  
the effects of single or higher-order substitutions on a particular 
sequence background with the log-odds ratio of sequence prob-
abilities between the wild-type and mutant sequences (Fig. 1 and 
Supplementary Fig. 1): 

$E P
P

E E( , ) log ( )
( )

( ) ( ) ( )T T T
T

T Tmut
mut

wt
mut wtwt � �  3

The summation over coupling terms Jij between all pairs of posi-
tions in the evolutionary statistical energy E directly incorporates 
sequence context, that is, the effects of pairwise epistasis, into the 
calculation of mutation effects. We refer to this model, which is the 
basis of EVmutation, as the ‘epistatic model’.

Model captures experimental fitness landscapes
We assessed the extent to which the statistical energy landscapes 
computed using EVmutation corresponded with experimentally 
measured changes of phenotypes. We collected data from both  
saturation mutagenesis experiments of genes encoding proteins 
and RNA and focused low-throughput studies15,46,57–60, resulting 
in 34 data sets from 29 non-redundant experiments (21 proteins, 
and a tRNA gene27; Supplementary Table 1) that include all cur-
rently available mutation experiments where the protein or RNA 
had a sufficiently large and diverse alignment (Online Methods). 
For each protein or RNA molecule tested, we generated a multiple 
sequence alignment of the sequence family, inferred the parameters h  
and J of the epistatic model, and compared the change in statistical 
energy ($E) to the corresponding experimental measurements of  
the effects of the mutations (Fig. 2 and Supplementary Table 2).  
Since relationships between protein function and organismal  
fitness are not expected to be linear31, we focused on reporting 
rank correlations as the primary metric for evaluating predictive 
performance, but our results are robust to a variety of measures 
(Supplementary Table 3).

We found significant correlations between the computed $E of the 
epistatic model and the experimental measurements of phenotype and 
fitness for all high-throughput experimental data sets (Spearman’s  
R 0.4–0.7; P-values from <10−300 to <10−27 and R = 0.2, P < 10−12 for 
one of the BRCA1 experiments not expected to correlate well (see 
below)). We found that the agreement between $E and experimental 
data is higher if the assayed phenotype is closely linked to an essential 
process, and that agreement depends on the strength of purifying 
selection applied in the experiment (Fig. 3, Supplementary Table 3,  
and Supplementary Fig. 2). For instance, some of the strongest  
correlations between $E and experimental data were for the enzymatic 
activity of a methyltransferase that protects DNA from degradation17, 

(3)(3)
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Epistatic modelIndependent model

L PAI V L PAI V

Model constraints on sequences

Predict effects of mutations

L PI VDL PI VD

A ��D wrongly predicted neutral
ignoring sequence context

A ��D correctly predicted damaging
needs couplings to other sites

Existing approaches Our approach (EVmutation)

Figure 1 Inferring context-dependent effects of mutations from 
sequences. Evolution has generated diverse families of proteins  
and RNAs with varied sequences that perform a common function.  
An unsupervised probabilistic model trained to generate the natural 
diversity in a multiple sequence alignment of a family can be used to 
predict the relative favorability of unseen mutations. Existing models 
describe functional constraints on each position i in a sequence S 
independently, averaging over the effect of background positions j.  
This can lead to incorrect predictions of neutrality. Our approach infers 
a global probability model with pairwise interactions between positions i 
and j (Jij) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Figure 1.
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Neural networks make powerful 
latent variable models

AQKLYLTHIDAEVE

ADRLYMTKIHHQFD

ADTLFITEVKQVFE

ADRLYMTKIHHTFD

ADKLYCTLIHNSFE

ADRLYMTKIHHEFE

ADRLYLTMIHQKFE

TDRLYITHIDETFE

ADRLYLTQIRNKFK

TSKMYITKIGQEFE

ADRLYMTKIHHEFE

Latent variable
p(z)

Sequence family
XNonlinear 

mapping
p(x|z)

z1

z2

AQKLYLTHIDAEVEGD 
ADRLYMTKIHHQFDGD 
ADTLFITEVKQVFEGD 
ADRLYMTKIHHTFDGD 
ADKLYCTLIHNSFEGD 
ADRLYMTKIHHEFEGD 
ADRLYLTMIHQKFEAD 
TDRLYITHIDETFEGD 
ADRLYLTQIRNKFKGD 
TSKMYITKIGQEFEGD 
ADRLYMTKIHHEFEGD 
ADRLYITHIHHSFEGD 
ADRLYMTKIHHEFEGD 



p(x) for latent variable models 
is generally intractable

have to account for all possible z for each x 
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Variational autoencoders provide 
a tractable lower bound on p(x)

Kingma, D.P. and Welling, M., (2013). Auto-encoding variational bayes.

Rezende, D.J., Mohamed, S. and Wierstra, D., (2014). Stochastic backpropagation and approximate inference in deep generative models. 
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Approximate posterior
(Encoder)

Generative model
(Decoder)

Latent variable
p(z)

Reconstruction costELBO = 

- Information cost (latent variables)



Latent variables are generated  
for each sequence in alignment
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β-lactamase sequence family



Variational inference on decoder 
weights prevents overfitting

Kingma, D.P. and Welling, M., (2013). Auto-encoding variational bayes.
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L(�,✓;X) = N Ex2X

⇥
Eq(✓)q(z|x) [log p(x|z,✓)]�DKL(q(z|x)||p(z))

⇤
�
X

✓(i)

DKL(q(✓
(i))||p(✓(i)))L(�,✓;X) = N Ex2X
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Reconstruction costELBO = 

- Information cost (latent variables)

- Information cost (model parameters)



Mutation prediction with a 
variational autoencoder

1) Infer a generative 
model of the family

2) Approximate Log 
Ratio with difference in 

ELBO
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p(z)



To evaluate performance, we collected ~30 
saturation mutagenesis experiments

Log probability ratio

Delta 
ELBO

McLaughlin Jr, R.N., Poelwijk, F.J., Raman, A., Gosal, W.S. and Ranganathan, R., 2012. The spatial architecture of 

protein function and adaptation. Nature, 491(7422), pp.138-142.
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Latent variable model is more 
predictive than pairwise model
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Deeper sequence alignments 
lead to more predictive models
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Can we interpret our model by 
building biology into the components



Encoding biological knowledge in a 
structured matrix with parameter sharing

Categorical VAE decoder

Scale shared across 
a position

Dictionary shared across 
all positions

Parameterized by:

z = latent variable 
h = hidden vector
x = sequence

W,b = weights



Biological constraints were 
included in model parameterization

Dictionary shared across 
all positions



The dictionary encodes 
amino acid preferences
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Biological constraints were 
included in model parameterization

Scale shared across 
a position



Sparse scale factors are 
localized in 3DSparsity scale parameters

β-lactamase

DNA methyltransferase HaeIII

Dihidrofolate reductase



Recap

Building good generative 
models of sequence families is 

useful

Latent variable models predict 
the effect of mutations better 

than state-of-art
MHAGEDMHAEKLYSTCVR KLYS CT VRH

RI NTNF G
AK

Approximate posterior
(Encoder)

Generative model
(Decoder)

Latent variable
p(z)

Predicting the effects of 
mutations is important
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