Predicting the effects of mutations with deep generative models

Adam Riesselman

Predicting the effects of mutations with deep generative models

Adam Riesselman

John Ingraham

Debbie Marks

Proteins are the **workhorses** of biology

ATGAGTATTCAACATTTCCGTGT CGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCT CACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGG GTGCACGAGTGGGTTACATCGAA CTGGATCTCAACAGCGGTAAGAT CCTTGAGAGTTTTCGCCCCGAAG AACGTTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCG GGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAG AAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACA ACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAG...

Protein

MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVAGPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

20 different amino acids

4 different bases

RNA

Function

Structure

Mutations impact protein function

MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACPLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

E→L

MSIQHFRVALIPFFAAFCLPVFA HPETLVKVKDAEDQLGARVGYIE LDLNSGKILESFRPEERFPMMST FKVLLCGAVLSRVDAGQEQLGRR IHYSQNDLVEYSPVTEKHLTDGM TVRELCSAAITMSDNTAANLLLT TIGGPKELTAFLHNMGDHVTRLD RWEPELNEAIPNDERDTTMPAAM ATTLRKLLTGELLTLASRQQLID WMEADKVACFLLRSALPAGWFIA DKSGAGERGSRGIIAALGPDGKP SRIVVIYTTGSQATMDERNRQIA EIGASLIKHW

???

Structure

Function

Mutation effect prediction is important

Understanding disease

Biomedicine

Bioengineering

"Does this mutation cause cancer?"

"Is this antibody stable in a patient?"

"Will this protein digest wood better for biofuels?"

State of art methods for measuring mutation effects

MSIQTFRVALIPFF MSIQHFRVALIPFF MSIQYFRVALIPFF MSIQRFRVALIPFF MSIQVFRVALIPFF MSIQCFRVALIPFF MSIQGFRVALIPFF MSIQIFRVALIPFF MSIQLFRVALIPFF

Input

Pooled mutated

sequences

MSIQHFRVALIPFF MSIQHFRVALIPFF MSIQYFRVALIPFF MSIQHFRVALIPFF MSIQHFRVALIPFF MSIQHFRVALIPFF MSIQHFRVALIPFF MSIQHFRVALIPFF MSIQHFRVALIPFF

Output: Pooled mutated sequences

Compare ratio of sequences before and after selection

State of art methods for measuring mutation effects

Understanding the effects of mutations is important

10²-10⁶ Different experiments

510W

Expensive

There has to be a better way...

Lots of other examples of Protein X are available

ADRLYMTKIHHEFEGD

ADRLYMTKIHHQFDGD

ADRLYMTKIHHEFEGD

All are functional, homologous examples of Protein X

Lots of other examples of Protein X are available

Sequences are found in public genome databases.

DRLYMTKIHHEFEGD ADRLYMTKIHHQFDGD

Natural evolution is an experiment, in parallel.

Assumption:

Present in database: Tolerated

ADRLYLTQIRNKFKGD

Not in database: Deleterious

All are functional, homologous examples of Protein X

Natural sequences can be grouped into families via alignments

Dihydrofolate reductase a billion years of data

6 U.

Courtesy: John Ingraham

Natural sequences have been evolved to be functional

AQKLYLTHIDAEVEGD ADRLYMTKIHHQFDGD ADTLFITEVKQVFEGD ADRLYMTKIHHTFDGD ADRLYMTKIHHEFEGD ADRLYLTMIHQKFEAD TDRLYITHIDETFEGD ADRLYLTQIRNKFKGD TSKMYITKIGQEFEGD ADRLYMTKIHHEFEGD ADRLYMTKIHHEFEGD

X

Fit generative model

P(x)

Generative model captures functional constraints

Mutation effect prediction with an unsupervised model

1) Infer a **generative model** of the family

AQKLYLTHIDAEVEGD ADRLYMTKIHHQFDGD ADTLFITEVKQVFEGD ADRLYMTKIHHTFDGD ADRLYMTKIHHEFEGD ADRLYMTKIHHEFEGD ADRLYLTMIHQKFEAD TDRLYITHIDETFEGD ADRLYLTQIRNKFKGD

 \downarrow $p(\mathbf{x}|\boldsymbol{\theta})$

2) Compute Log Ratio for each mutant

$$\log \frac{p(\mathbf{x}_{mut}|\boldsymbol{\theta})}{p(\mathbf{x}_{wild}|\boldsymbol{\theta})}$$

"How much does this mutation look like what we've seen in nature?"

Mutation effect prediction with an unsupervised model

Infer a generative 2) Compute Log Ratio model of the family for each mutant Uses public data (effectively free)

AQKLYLTHIDAEVEGD ADRLYMTKIHHQFDGD ADTLFITEVKQVFEGD ADRLYMTKIHHTFDGD ADKLYCTLIHNSFEGD ADRLYMTKIHHEFEGD ADRLYLTMIHQKFEAD TDRLYITHIDETFEGD ADRLYLTQIRNKFKGD

Fast

Works on almost any protein

Accurate mutation look like what

First-pass mutation predictors model **evolutionary conservation**

 $P(\mathbf{x}) = p_1(x_1)p_2(x_2)\cdots p_L(x_L)$

 $R \rightarrow I$ Deleterious

How to capture interactions?

Amino acid i Amino acid j X_i Xi A IHHEREGD

Pairwise undirected model

$$P(\mathbf{x}) = \frac{1}{Z} \exp\left(\sum_{i < j} J_{ij}(x_i, x_j) + \sum_i h_i(x_i)\right)$$

a.k.a. Markov Random Field a.k.a. Ising (Potts) model a.k.a Multinomial logistic regression

Undirected graphical model for sequences parameterizes pairs of letters at pairs of positions

$$P(\mathbf{x}) = \frac{1}{Z} \exp\left(\sum_{i < j} J_{ij}(x_i, x_j) + \sum_i h_i(x_i)\right)$$

Pairwise >> sitewise. Should we stop there?

Pairwise model Ŷ. $\mathbf{J}_{i\,j}(\sigma_i,\,\sigma_j)$ $\dot{\mathbf{h}}_{i}(\sigma_{i})$

Higher order?

Pairwise interactions insufficient for mutation effects in **proteins**

Dihydrofolate

raduataa

The landscape is shaped by high-order genetic interactions. The fitness landscape has extensive high-order genetic interactions. A series of models of increasing complexity were constructed that described the log(IC75) of each genotype as a sum of parameters (equivalent to multiplying fold-changes in IC75) that

Hemoglobin

In summary, results of our mutagenesis experiments revealed pervasive epistasis among segregating amino acid variants in deer mouse Hb (Table 1). The individual and joint effects Terpene Synthase

Quantitative comparisons indicated context dependence for mutational effects

Drug resistance

Physiology

Synthetic biology

Neural networks make powerful latent variable models

p(**x**) for latent variable models is generally **intractable**

Variational autoencoders provide a tractable lower bound on p(x)

Kingma, D.P. and Welling, M., (2013). Auto-encoding variational bayes.

Rezende, D.J., Mohamed, S. and Wierstra, D., (2014). Stochastic backpropagation and approximate inference in deep generative models.

Latent variables are generated for each sequence in alignment

β-lactamase sequence family

Update 10

Variational inference on decoder weights prevents overfitting

Kingma, D.P. and Welling, M., (2013). Auto-encoding variational bayes.

Mutation prediction with a variational autoencoder

1) Infer a **generative model** of the family

2) Approximate **Log Ratio** with difference in ELBO

To evaluate performance, we collected ~30 saturation mutagenesis experiments

Latent variable model is more predictive than pairwise model

Deeper sequence alignments lead to **more predictive** models

Can we **interpret** our model by building **biology** into the **components**

Encoding **biological knowledge** in a structured matrix with **parameter sharing**

<u>Categorical VAE decoder</u> **z** = latent variable **h** = hidden vector $\mathbf{h} = MLP(\mathbf{z})$ **x** = sequence **W,b** = weights $p(x_i | \mathbf{z}) = \text{Softmax}(\mathbf{W}^{(i)}\mathbf{h} + \mathbf{b}^{(i)})$ Parameterized by: $p(x_i|\mathbf{z}) = \text{Softmax}\left(\mathbf{D}\tilde{\mathbf{W}}^{(i)}\left(\text{Sigmoid}\left(\mathbf{s}^{(i)}\right)\odot\mathbf{h}\right) + \mathbf{b}^{(i)}\right)$ Scale shared across **Dictionary** shared across all positions a position

Biological constraints were included in model parameterization

The dictionary encodes amino acid preferences

Biological constraints were included in model parameterization

$$p(x_i | \mathbf{z}) = \text{Softmax} \left(\mathbf{D} \tilde{\mathbf{W}}^{(i)} \left(\text{Sigmoid} \left(\mathbf{s}^{(i)} \right) \odot \mathbf{h} \right) + \mathbf{b}^{(i)} \right)$$

Scale shared across a position

Sparse scale factors are localized in 3D

DNA methyltransferase HaellI

β-lactamase

Dihidrofolate reductase

Recap

Predicting the effects of mutations is important

Building good generative models of sequence families is useful

Latent variable models predict the effect of mutations better than state-of-art

Thank you!

Debora Marks John Ingraham

Chris Sander

DeepSequence github:

https://github.com/debbiemarkslab/DeepSequence

EVcouplings python package:

https://github.com/debbiemarkslab/EVcouplings

Marks Lab +

Thomas Hopf Anna Green Charlotta Scharfe **Benni Schubert** Eli Weinstein Kelly Brock Rohan Maddamsetti David Ding June Shin Hailey Cambra Agnes Toth-Petroczy Perry Palmedo Frank Poelwijk Nick Gauthier

Jennie Epp

Thank you!