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How does the brain extract behaviorally
relevant information from these waveforms?



Peripheral auditory system: well characterized...
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Peripheral auditory system: well characterized...

... but auditory cortex is poorly understood.
(Particularly in humans.)



TODAY:

Basic questions about functional organization
of human auditory cortex.
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TODAY:

Is there a hierarchical organization?
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What do different stages do?
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Neuron

A Task-Optimized Neural Network Replicates Human
Auditory Behavior, Predicts Brain Responses, and
Reveals a Cortical Processing Hierarchy

Highlights Authors
e A deep neural network optimized for speech and music tasks Alexander J.E. Kell, Daniel L.K. Yamins,
performed as well as human listeners Erica N. Shook,
Sam V. Norman-Haignere,
e The optimization produced separate music and speech Josh H. McDermott

nathways after a shared front end

Work with:
Dan Yamins, Erica Shook, Sam Norman-Haignere,

and Josh McDermott
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How to build better models
of auditory cortex?
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How to build better models
of auditory cortex?

What was said?
Who said it?
- How did they feel when

they said It?

M

What caused the sound?
Where?
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Recent machine learning advances: Deep learning



Recent machine learning advances: Deep learning

-

layer 1

Hierarchical convolutional neural networks (CNNs)
(Fukushima, 1980; Lecun et al., 1989; Krizhevsky et al., 2012; Yamins, Hong, et al., 2014, etc.)
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Approach pioneered in the visual cortex
(Yamins, Hong, et al. 2014; Cadieu et al. 2014; Hong, Yamins, et al. 2016)
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Approach pioneered in the visual cortex
(Yamins, Hong, et al. 2014; Cadieu et al. 2014; Hong, Yamins, et al. 2016)

Potentially:
Particularly useful in auditory cortex
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Unsatisfying aspects of deep learning
as a neuroscience model
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- Unrealistic amount of (supervised) training
data.

= Unrealistic learning rule (backprop).

= Discriminative models (rather than
generative).

- ef{cC.
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Network optimization:
Real-world tasks

... that have large labelled datasets.

Word recognition task

Background
+ noise

587-way AFC:
“  Which word (at 1 sec.)?
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Network optimization:
Real-world tasks

... that have large labelled datasets.

Word recognition task

Background
+ noise

587-way AFC:
“  Which word (at 1 sec.)?

Musical genre task

Background
T noise

- 41-way AFC:
g TP sy Which genre?
b——m—
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Network optimization:
Architecture search

More
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Network optimization:
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Network optimization:
Resulting network

Best-performing
deep neural network

‘I-H!

Example first-layer filters




Comparing human & model behavior



Comparing human & model behavior

Word recognition task
+ Background

noise
PR Which word (at 1 sec.)?

|
2 Sec.

26 conditions:
5 background types x 5 signal-to-noise ratios (SNRs)
+ noiseless
' Music
O Auditory scene
Background type: Speaker-shaped noise

2-speaker babble
[ 8-speaker babble




CNN & human psychophysics

Word psychophysics:
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CNN & human psychophysics
Word psychophysics: Word psychophysics:
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CNN & human psychophysics
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CNN & human psychophysics

Background type: 1) Speaker-shaped noise

Music 2-speaker babble
(] Auditory scene [] 8-speaker babble




Using this model to predict cortical responses to
natural sounds



Using this model to predict cortical responses to
natural sounds

Measure fMRI responses to 165 natural sounds*

person screaming road traffic guitar
man speaking zipper coughing
flushing toilet cellphone vibrating crumpling paper
pouring liquid water dripping siren
tooth-brushing scratching splashing water
woman speaking car windows computer speech
car accelerating telephone ringing alarm clock
biting and chewing chopping food walking with heels
laughing telephone dialing vacuum
typing girl speaking wind
car engine starting car horn boy speaking
running water writing chair rolling
breathing computer startup sound rock song
keys jangling background speech door knocking

dishes clanking songbird dog barking

*Norman-Haignere, Kanwisher, McDermott Neuron 2015 (Thanks!)
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v.: single voxel’s response
to all 165 natural sounds
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cat purring

guitar riff

... etc. ...

Each voxel:
Mean response to each of 165 sounds
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v.: single voxel’s response
to all 165 natural sounds

I
I

F: features from
one network layer




C

165 everyday
sounds:

person screaming
velcro

whistling

frying pan sizzling
alarm clock

cat purring

guitar riff

... etc. ...

NN as encoding model

Each voxel = weighted sum of units in a given layer
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CNN as encoding model

Each voxel = weighted sum of units in a given layer

v.: single voxel’s response
to all 165 natural sounds
Il

165 everyday ’ |
o :
person screaming ~ Regularized
velcro | linear regression

whistling F: features from
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frying pan sizzling
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... etc. ...

Cross-validated regularized linear regression
to predict voxel’s response
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CNN as encoding model

Each voxel = weighted sum of units in a given layer
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to predict voxel’s response

Dependent measure: Variance explained
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CNN as encoding model

Each voxel = weighted sum of units in a given layer

v.: single voxel’s response
to all 165 natural sounds

165 everyday ,

folnds 3

person screaming
| linear regression

velcro

whistling F: features from

. N one network layer
frying pan sizzling

alarm clock
cat purring
guitar riff
... etc. ...

Cross-validated regularized linear regression
to predict voxel’s response

Dependent measure: Variance explained

Baseline:
Identical procedure with a spectrotemporal filter model



Variance explained across all of auditory cortex
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Variance explained across all of auditory cortex
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Organization of human auditory cortex
outside of primary areas?



Organization of human auditory cortex
outside of primary areas?

A proposal from macaque anatomy:
Tripartite hierarchical organization

Tramo et al. (1999)
Evidence mostly anatomical
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A measure of hierarchy?



layer 4
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CNN architecture:
Hierarchical and feedforward
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CNN architecture:
Hierarchical and feedforward
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Best-predicting network layer for each voxel
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Best-predicting network layer for each voxel

Layer: [ conv3orlower [ conv4 [ conv5 or higher
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Best-predicting network layer for each voxel

Layer: MM conv3orlower [ conv4 [ conv5 or higher
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Best-predicting network layer for each voxel

Layer: MM conv3orlower B8 conv4

B conv5 or higher

convi

norm1

conv2
fcé

pool1
norma

pool2
conv3
conv4
convs
pool5
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Introduced multi-task networks
as neural models
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Introduced multi-task networks
as neural models

Performs as well as humans,
with similar pattern of errors

Network prop. correct

0.5 1.0
Human prop. correct
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0.5 1.0
Human prop. correct

Introduced multi-task networks
as neural models

Performs as well as humans,
with similar pattern of errors

Reveals hierarchical organization
in human auditory cortex
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Dan Yamins Erica Sho‘ok

Josh McDermott

McDermott lab for conversations + feedback.

Nancy Kanwisher + Sam Norman-Haignere for
the fMRI data for CNN work.

Ariel Herbert-Voss for running behavioral subjects.
Atsushi Takahashi for help designing MR protocols.
Steve Shannon for MR support.

Satra Ghosh + the Openmind team for support with
computational resources.




