Invariant & hierarchical computation in human auditory cortex

Alex Kell

2018.07.17 :: CSGF Program Review

time -

time —

time —

What was said? Who said it? How did they feel when they said it?

What caused the sound? Where?

time —

How does the brain extract behaviorally relevant information from these waveforms?

Peripheral auditory system: well characterized...

Peripheral auditory system: well characterized...

... but auditory cortex is poorly understood. (Particularly in humans.)

Basic questions about functional organization of human auditory cortex.

Is there a hierarchical organization?

Is there a hierarchical organization? If so, how many stages?

Is there a hierarchical organization? If so, how many stages? What do different stages do?

Is there a hierarchical organization? If so, how many stages? What do different stages do?

Use modeling to generate specific hypotheses in a principled manner

Neuron

A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy

Highlights

- A deep neural network optimized for speech and music tasks performed as well as human listeners
- The optimization produced separate music and speech pathways after a shared front end

Authors

Alexander J.E. Kell, Daniel L.K. Yamins, Erica N. Shook, Sam V. Norman-Haignere, Josh H. McDermott

Work with: Dan Yamins, Erica Shook, Sam Norman-Haignere, and Josh McDermott

How to build better models of auditory cortex?

How to build better models of auditory cortex?

How to build better models of auditory cortex?

Recent machine learning advances: Deep learning

Recent machine learning advances: Deep learning

Hierarchical convolutional neural networks (CNNs)

(Fukushima, 1980; Lecun et al., 1989; Krizhevsky et al., 2012; Yamins, Hong, et al., 2014; etc.)

KEY HYPOTHESIS:

A model optimized to perform real-world auditory tasks may converge to brain-like computations

KEY HYPOTHESIS:

A model optimized to perform real-world auditory tasks may converge to brain-like computations

Approach pioneered in the visual cortex

(Yamins, Hong, et al. 2014; Cadieu et al. 2014; Hong, Yamins, et al. 2016)

KEY HYPOTHESIS:

A model optimized to perform real-world auditory tasks may converge to brain-like computations

Approach pioneered in the visual cortex (Yamins, Hong, et al. 2014; Cadieu et al. 2014; Hong, Yamins, et al. 2016)

Potentially: Particularly useful in auditory cortex

Unsatisfying aspects of deep learning as a neuroscience model

Unsatisfying aspects of deep learning as a neuroscience model

- Unrealistic amount of (supervised) training data.
- Unrealistic learning rule (backprop).
- Discriminative models (rather than generative).
- etc.

Unsatisfying aspects of deep learning as a neuroscience model

- <u>Unrealistic amount of (supervised) training</u> <u>data.</u>
- Unrealistic learning rule (backprop).
 - Discriminative models (rather than generative).
- etc.

... that have large labelled datasets.

... that have large labelled datasets.

... that have large labelled datasets.

How many layers can be shared without a detriment in task performance?

Network optimization: Resulting network

Best-performing deep neural network

Comparing human & model behavior

Comparing human & model behavior

26 conditions:

5 background types x 5 signal-to-noise ratios (SNRs) + noiseless

Background type:	Music
	Auditory scene
	Speaker-shaped noise
	2-speaker babble
	8-speaker babble

Background type:

Auditory scene

Speaker-shaped noise
 2-speaker babble
 8-speaker babble

Background type: Music Auditory scene

Background type:

Music
Auditory scene

NOTE:

CNN optimized ONLY for task performance NOT optimized to behave similarly to humans

Background type:

Music
 Auditory scene

NOTE:

CNN optimized ONLY for task performance NOT optimized to behave similarly to humans

POTENTIAL REASONS FOR SIMILARITY:

Background type:

Music
Auditory scene

NOTE:

CNN optimized ONLY for task performance NOT optimized to behave similarly to humans

POTENTIAL REASONS FOR SIMILARITY:

1. Both network & humans near optimal?

Background type:

Music
Auditory scene

NOTE:

CNN optimized ONLY for task performance NOT optimized to behave similarly to humans

POTENTIAL REASONS FOR SIMILARITY:

- 1. Both network & humans near optimal?
- 2. Algorithmic similarities between net & humans?
 - Background type: Music Auditory scene
- Speaker-shaped noise
 2-speaker babble
 8-speaker babble

Using this model to predict cortical responses to natural sounds

Using this model to predict cortical responses to natural sounds

Measure fMRI responses to 165 natural sounds*

person screaming man speaking flushing toilet pouring liquid tooth-brushing woman speaking car accelerating biting and chewing laughing typing car engine starting running water breathing keys jangling dishes clanking

road traffic zipper cellphone vibrating water dripping scratching car windows telephone ringing chopping food telephone dialing girl speaking car horn writing computer startup sound background speech songbird

guitar coughing crumpling paper siren splashing water computer speech alarm clock walking with heels vacuum wind boy speaking chair rolling rock song door knocking dog barking

*Norman-Haignere, Kanwisher, McDermott <u>Neuron</u> 2015 (Thanks!)

Each voxel: Mean response to each of 165 sounds

Each voxel = weighted sum of units in a given layer

Each voxel = weighted sum of units in a given layer

Cross-validated regularized linear regression to predict voxel's response

Each voxel = weighted sum of units in a given layer

Cross-validated regularized linear regression to predict voxel's response

Dependent measure: Variance explained

Each voxel = weighted sum of units in a given layer

Cross-validated regularized linear regression to predict voxel's response

Dependent measure: Variance explained

Baseline: Identical procedure with a spectrotemporal filter model

Organization of human auditory cortex outside of primary areas?

Organization of human auditory cortex outside of primary areas?

A proposal from macaque anatomy: Tripartite hierarchical organization

Tramo et al. (1999) Evidence mostly anatomical

A measure of hierarchy?

CNN architecture: Hierarchical and feedforward

CNN architecture: Hierarchical and feedforward

Which layer best predicts each voxel's response? A measure of "complexity"

Best-predicting network layer for each voxel

Best-predicting network layer for each voxel

conv4

conv5 or higher

LH

conv3 or lower

Layer:

RH

Network reveals hierarchical organization in human auditory cortex

Introduced multi-task networks as neural models

Introduced multi-task networks as neural models

Performs as well as humans, with similar pattern of errors

74

Introduced multi-task networks as neural models

Performs as well as humans, with similar pattern of errors

Reveals hierarchical organization in human auditory cortex
Thanks.

Josh McDermott

Department of Energy Computational Science Graduate Fellowship

Dan Yamins Erica Shook

McDermott lab for conversations + feedback.

Nancy Kanwisher + Sam Norman-Haignere for the fMRI data for CNN work.

Ariel Herbert-Voss for running behavioral subjects.

Atsushi Takahashi for help designing MR protocols.

Steve Shannon for MR support.

Satra Ghosh + the Openmind team for support with computational resources.