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Peripheral auditory system: well characterized...
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Peripheral auditory system: well characterized...

... but auditory cortex is poorly understood. 
(Particularly in humans.)
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TODAY:
Basic questions about functional organization 

of human auditory cortex.
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TODAY:

Is there a hierarchical organization? 

If so, how many stages? 

What do different stages do?

Use modeling to generate specific 
hypotheses in a principled manner
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Work with: 
Dan Yamins, Erica Shook, Sam Norman-Haignere,  

and Josh McDermott
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How to build better models  
of auditory cortex?
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Recent machine learning advances: Deep learning 
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Hierarchical convolutional neural networks (CNNs) 
(Fukushima, 1980; Lecun et al., 1989; Krizhevsky et al., 2012; Yamins, Hong, et al., 2014; etc.)

Recent machine learning advances: Deep learning 

 17



 18

KEY HYPOTHESIS: 

A model optimized to perform real-world 
auditory tasks may converge to  

brain-like computations
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KEY HYPOTHESIS: 

A model optimized to perform real-world 
auditory tasks may converge to  

brain-like computations

Approach pioneered in the visual cortex 
(Yamins, Hong, et al. 2014; Cadieu et al. 2014; Hong, Yamins, et al. 2016)
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KEY HYPOTHESIS: 

A model optimized to perform real-world 
auditory tasks may converge to  

brain-like computations

Potentially:  
Particularly useful in auditory cortex 

Approach pioneered in the visual cortex 
(Yamins, Hong, et al. 2014; Cadieu et al. 2014; Hong, Yamins, et al. 2016)



Unsatisfying aspects of deep learning 
as a neuroscience model



- Unrealistic amount of (supervised) training 
data. 

- Unrealistic learning rule (backprop). 

- Discriminative models (rather than 
generative). 

- etc.
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Network optimization:  
Real-world tasks
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Network optimization:  
Real-world tasks

… that have large labelled datasets.
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Network optimization:  
Real-world tasks

… that have large labelled datasets.
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Network optimization:  
Architecture search
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Network optimization:  
Architecture search

More 
parameters

Fewer 
parameters
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Network optimization:  
Architecture search

More 
parameters

Fewer 
parameters

How many layers can be shared 
without a detriment  
in task performance?



Network optimization:  
Architecture search



Network optimization:  
Architecture search



Network optimization:  
Architecture search
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Network optimization:  
Resulting network
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Comparing human & model behavior
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Comparing human & model behavior

26 conditions:  
5 background types x 5 signal-to-noise ratios (SNRs) 

+ noiseless
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CNN & human psychophysics
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CNN & human psychophysics

NOTE:  
CNN optimized ONLY for task performance 

NOT optimized to behave similarly to humans 
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CNN & human psychophysics

NOTE:  
CNN optimized ONLY for task performance 

NOT optimized to behave similarly to humans 

POTENTIAL REASONS FOR SIMILARITY: 

1. Both network & humans near optimal? 

2. Algorithmic similarities between net & humans?
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Using this model to predict cortical responses to 
natural sounds
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Using this model to predict cortical responses to 
natural sounds

person screaming 
man speaking 
flushing toilet 
pouring liquid 
tooth-brushing 

woman speaking 
car accelerating 

biting and chewing 
laughing 
typing 

car engine starting 
running water 

breathing 
keys jangling 

dishes clanking 
...

road traffic 
zipper 

cellphone vibrating 
water dripping 

scratching 
car windows 

telephone ringing 
chopping food 

telephone dialing 
girl speaking 

car horn 
writing 

computer startup sound 
background speech 

songbird 
...

guitar 
coughing 

crumpling paper 
siren 

splashing water 
computer speech 

alarm clock 
walking with heels 

vacuum 
wind 

boy speaking 
chair rolling 
rock song 

door knocking 
dog barking 

...

Measure fMRI responses to 165 natural sounds*

*Norman-Haignere, Kanwisher, McDermott Neuron 2015 (Thanks!)
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Each voxel: 
Mean response to each of 165 sounds
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CNN as encoding model
Each voxel = weighted sum of units in a given layer
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CNN as encoding model
Each voxel = weighted sum of units in a given layer

Cross-validated regularized linear regression  
to predict voxel’s response
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CNN as encoding model
Each voxel = weighted sum of units in a given layer

Cross-validated regularized linear regression  
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Dependent measure: Variance explained
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CNN as encoding model
Each voxel = weighted sum of units in a given layer

Cross-validated regularized linear regression  
to predict voxel’s response

Baseline: 
Identical procedure with a spectrotemporal filter model

Dependent measure: Variance explained
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Variance explained across all of auditory cortex
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Variance explained across all of auditory cortex
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Variance explained across all of auditory cortex
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Variance explained across all of auditory cortex



Organization of human auditory cortex 
outside of primary areas?
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Tramo et al. (1999)
Evidence mostly anatomical

Tripartite hierarchical organization
A proposal from macaque anatomy:

Organization of human auditory cortex 
outside of primary areas?
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A measure of hierarchy?
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CNN architecture: 
Hierarchical and feedforward
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CNN architecture: 
Hierarchical and feedforward
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Which layer best predicts each voxel’s response? 
A measure of “complexity”
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Network reveals  
hierarchical organization  
in human auditory cortex
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Introduced multi-task networks   
  as neural models
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Introduced multi-task networks   
  as neural models

Performs as well as humans, 
  with similar pattern of errors
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Introduced multi-task networks   
  as neural models

Performs as well as humans, 
  with similar pattern of errors

Reveals hierarchical organization  
  in human auditory cortex
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Thanks.

Department of Energy 
Computational Science  
Graduate Fellowship

McDermott lab for conversations + feedback. 

Nancy Kanwisher + Sam Norman-Haignere for 
the fMRI data for CNN work. 

Ariel Herbert-Voss for running behavioral subjects. 

Atsushi Takahashi for help designing MR protocols.  

Steve Shannon for MR support. 

Satra Ghosh + the Openmind team for support with 
computational resources.

Dan Yamins
Josh McDermott

Erica Shook


