

Computational efficiency of highorder finite volume methods for magnetohydrodynamics

Kyle Gerard Felker Princeton University

CSGF Annual Program Review: July 16, 2018

Arlington, VA

Motivation: computational magnetohydrodynamics (MHD)

- Accretion disk dynamics
 - Need to resolve fine-scale turbulence
 - Magnetic fields are crucial
- Major concerns for numerical methods for astrophysics:
 - Conserve relevant physical quantities to machine precision
 - Highly accurate without introducing artificial oscillations
 - High efficiency
 - Satisfy divergence constraint $\nabla \cdot \mathbf{R} = 0$

Second-order finite volume (FV) method

$$\mathcal{O}(\Delta x^2)$$

Second-order finite volume (FV) method

1. Reconstruct face-averaged primitive L/R states using Piecewise Linear Method (PLM)

$$\langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} = PLM(\{\langle \mathbf{W} \rangle_{i,j}, \langle \mathbf{W} \rangle_{i\pm 1,j}, \langle \mathbf{W} \rangle_{i-2,j}\})$$

$$\mathcal{O}(\Delta x^2)$$

Second-order finite volume (FV) method

1. Reconstruct face-averaged primitive L/R states using Piecewise Linear Method (PLM)

$$\langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} = PLM(\{\langle \mathbf{W} \rangle_{i,j}, \langle \mathbf{W} \rangle_{i\pm 1,j}, \langle \mathbf{W} \rangle_{i-2,j}\})$$

3. Using a Riemann solver $\mathscr{F}()$, compute pointwise face-centered fluxes from face-centered primitive states

$$\mathcal{O}(\Delta x^2)$$

1. Reconstruct face-averaged primitive L/R states using Piecewise Parabolic Method (PPM)

Fourth-order finite volume method for conservation laws

$$\mathsf{Or} \quad \langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} = PPM(\{\langle \mathbf{W} \rangle_{i,j}, \langle \mathbf{W} \rangle_{i\pm 1,j}, \langle \mathbf{W} \rangle_{i\pm 2,j}, \langle \mathbf{W} \rangle_{i-3,j}\})$$

(McCorquodale & Colella 2011), (Colella+ 2009), (Guzik+ 2015)

$$\mathcal{O}(\Delta x^4)$$

1. Reconstruct face-averaged primitive L/R states using Piecewise Parabolic Method (PPM)

Fourth-order finite volume method for conservation laws

$$\forall \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} = PPM(\{\langle \mathbf{W} \rangle_{i,j}, \langle \mathbf{W} \rangle_{i\pm 1,j}, \langle \mathbf{W} \rangle_{i\pm 2,j}, \langle \mathbf{W} \rangle_{i-3,j}\})$$

(McCorquodale & Colella 2011), (Colella+ 2009), (Guzik+ 2015)

$$\mathcal{O}(\Delta x^4)$$

1. Reconstruct face-averaged primitive L/R states using Piecewise Parabolic Method (PPM)

Fourth-order finite volume method for conservation laws

Or
$$\langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} = PPM(\{\langle \mathbf{W} \rangle_{i,j}, \langle \mathbf{W} \rangle_{i\pm 1,j}, \langle \mathbf{W} \rangle_{i\pm 2,j}, \langle \mathbf{W} \rangle_{i-3,j}\})$$

(McCorquodale & Colella 2011), (Colella+ 2009), (Guzik+ 2015)

$$\mathcal{O}(\Delta x^4)$$

1. Reconstruct face-averaged primitive L/R states using Piecewise Parabolic Method (PPM)

$$\langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} = PPM(\{\langle \mathbf{W} \rangle_{i,j}, \langle \mathbf{W} \rangle_{i\pm 1,j}, \langle \mathbf{W} \rangle_{i\pm 2,j}, \langle \mathbf{W} \rangle_{i-3,j}\})$$

2. Compute pointwise face-centered L/R states

$$\mathbf{W}_{i-\frac{1}{2},j}^{L_1/R_1} = \langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} - \frac{h^2}{24} \Delta^{\perp,1} \langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j}$$

(McCorquodale & Colella 2011), (Colella+ 2009), (Guzik+ 2015)

4

(McCorquodale & Colella 2011), (Colella+ 2009), (Guzik+ 2015)

1. Reconstruct face-averaged primitive L/R states using Piecewise Parabolic Method (PPM)

 $\langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} = PPM(\{\langle \mathbf{W} \rangle_{i,j}, \langle \mathbf{W} \rangle_{i\pm 1,j}, \langle \mathbf{W} \rangle_{i\pm 2,j}, \langle \mathbf{W} \rangle_{i-3,j}\})$

2. Compute pointwise face-centered L/R states

$$\mathbf{W}_{i-\frac{1}{2},j}^{L_1/R_1} = \langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} - \frac{h^2}{24} \Delta^{\perp,1} \langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j}$$

3. Using a Riemann solver $\mathscr{F}()$, compute pointwise face-centered fluxes from face-centered primitive states

$$\mathbf{F}_{1,i-\frac{1}{2},j} = \mathscr{F}(\mathbf{W}_{i-\frac{1}{2},j}^{L_1},\mathbf{W}_{i-\frac{1}{2},j}^{R_1})$$

(McCorquodale & Colella 2011), (Colella+ 2009), (Guzik+ 2015)

1. Reconstruct face-averaged primitive L/R states using Piecewise Parabolic Method (PPM)

 $\langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} = PPM(\{\langle \mathbf{W} \rangle_{i,j}, \langle \mathbf{W} \rangle_{i\pm 1,j}, \langle \mathbf{W} \rangle_{i\pm 2,j}, \langle \mathbf{W} \rangle_{i-3,j}\})$

2. Compute pointwise face-centered L/R states

$$\mathbf{W}_{i-\frac{1}{2},j}^{L_1/R_1} = \langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} - \frac{h^2}{24} \Delta^{\perp,1} \langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j}$$

3. Using a Riemann solver $\mathscr{F}()$, compute pointwise face-centered fluxes from face-centered primitive states

$$\mathbf{F}_{1,i-\frac{1}{2},j} = \mathscr{F}(\mathbf{W}_{i-\frac{1}{2},j}^{L_1},\mathbf{W}_{i-\frac{1}{2},j}^{R_1})$$

4. Compute fluxes from the fourth-order accurate faceaveraged primitive states $\longrightarrow \mathcal{O}(\Delta x^2)$ flux approx.

$$\overline{\mathbf{F}}_{1,i-\frac{1}{2},j} = \mathscr{F}(\langle \mathbf{W}^{L_1} \rangle_{i-\frac{1}{2},j}, \langle \mathbf{W}^{R_1} \rangle_{i-\frac{1}{2},j})$$

 $\mathcal{O}(\Delta x^4)$

(McCorquodale & Colella 2011), (Colella+ 2009), (Guzik+ 2015)

 $\mathbf{W}_{i-\frac{1}{2},j}^{L_1/R_1} = \langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} - \frac{h^2}{24} \Delta^{\perp,1} \langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j}$

$$\mathbf{F}_{1,i-\frac{1}{2},j} = \mathscr{F}(\mathbf{W}_{i-\frac{1}{2},j}^{L_1},\mathbf{W}_{i-\frac{1}{2},j}^{R_1})$$

4. Compute fluxes from the fourth-order accurate faceaveraged primitive states $\longrightarrow O(\Delta x^2)$ flux approx.

$$\overline{\mathbf{F}}_{1,i-\frac{1}{2},j} = \mathscr{F}(\langle \mathbf{W}^{L_1} \rangle_{i-\frac{1}{2},j}, \langle \mathbf{W}^{R_1} \rangle_{i-\frac{1}{2},j})$$

 $\mathcal{O}(\Delta x^4)$

 $\mathbf{w}_{i-3,j}^{\bigcirc} \mathbf{w}_{i-2,j}^{\bigcirc} \mathbf{w}_{i-1,j}^{\bigcirc} \mathbf{w}_{i,j}^{\bigcirc} \mathbf{w}_{i+1,j}^{\bigcirc} \mathbf{w}_{i+2,j}^{\bigcirc}$

4

1. Reconstruct face-averaged primitive L/R states using Piecewise Parabolic Method (PPM)

$$\langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} = PPM(\{\langle \mathbf{W} \rangle_{i,j}, \langle \mathbf{W} \rangle_{i\pm 1,j}, \langle \mathbf{W} \rangle_{i\pm 2,j}, \langle \mathbf{W} \rangle_{i-3,j}\})$$

2. Compute pointwise face-centered L/R states

(McCorquodale & Colella 2011), (Colella+ 2009), (Guzik+ 2015)

 $\langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} = PPM(\{\langle \mathbf{W} \rangle_{i,j}, \langle \mathbf{W} \rangle_{i\pm 1,j}, \langle \mathbf{W} \rangle_{i\pm 2,j}, \langle \mathbf{W} \rangle_{i-3,j}\})$

2. Compute pointwise face-centered L/R states

$$\mathbf{W}_{i-\frac{1}{2},j}^{L_1/R_1} = \langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j} - \frac{h^2}{24} \Delta^{\perp,1} \langle \mathbf{W}^{L_1/R_1} \rangle_{i-\frac{1}{2},j}$$

3. Using a Riemann solver $\mathscr{F}()$, compute pointwise face-centered fluxes from face-centered primitive states

$$\mathbf{F}_{1,i-\frac{1}{2},j} = \mathscr{F}(\mathbf{W}_{i-\frac{1}{2},j}^{L_1},\mathbf{W}_{i-\frac{1}{2},j}^{R_1})$$

4. Compute fluxes from the fourth-order accurate faceaveraged primitive states $\longrightarrow \mathcal{O}(\Delta x^2)$ flux approx.

$$\overline{\mathbf{F}}_{1,i-\frac{1}{2},j} = \mathscr{F}(\langle \mathbf{W}^{L_1} \rangle_{i-\frac{1}{2},j}, \langle \mathbf{W}^{R_1} \rangle_{i-\frac{1}{2},j})$$

5. Transform the face-centered fluxes to fourth-order accurate face-averaged fluxes

$$\langle \mathbf{F}_1 \rangle_{i-\frac{1}{2},j} = \mathbf{F}_{1,i-\frac{1}{2},j} - \frac{h^2}{24} \Delta^{\perp,1} \overline{\mathbf{F}}_{1,i-\frac{1}{2},j}$$

- Complete redesign & rewrite of Athena (C) in C++
 - ~63,000 lines of C++
 - ~7,000 lines of Python utilities
- >2,000 commits since May 2014
- 10-20 developers

- Complete redesign & rewrite of Athena (C) in C++
 - ~63,000 lines of C++
 - ~7,000 lines of Python utilities
- >2,000 commits since May 2014
- 10-20 developers

- Complete redesign & rewrite of Athena (C) in C++
 - ~63,000 lines of C++
 - ~7,000 lines of Python utilities
- >2,000 commits since May 2014
- 10-20 developers
- Modern GitHub workflow
- Style checkers/code linters
- Continuous integration

https://jenkins.io/

- Complete redesign & rewrite of Athena (C) in C++
 - ~63,000 lines of C++
 - ~7,000 lines of Python utilities
- >2,000 commits since May 2014
- 10-20 developers
- Modern GitHub workflow
- Style checkers/code linters
- Continuous integration

v1.1.0 version released on 5/25/18

https://github.com/PrincetonUniversity/athena-public-version

Athena++

•	New	core	algori	ithms	and	physics
		_		_		_

- Adaptive and static mesh refinement
- General relativity
- Greater source code modularity
- Improved performance
 - Task-based execution model
 - Highly scalable MPI+OpenMP
 - OpenMP 4.5 SIMD explicit vectorization

			MZone-cycles/sec			
			Xeon Phi KNL 7210	Broadwell E5-2680 v4	Skylake-SP Gold 6148	
	PLM	HLLC	1.518	2.660	4.475	
		HLLE	1.625	2.773	4.808	
Hudro Sod		Roe	1.561	2.873	4.697	
nyuro sou	PPM	HLLC	0.758	1.328	2.408	
		HLLE	0.771	1.331	2.518	
		Roe	0.757	1.360	2.414	
		HLLD	0.708	1.338	2.421	
	PLM	HLLE	0.806	1.404	2.322	
MHD Brio Wu		Roe	0.652	1.104	1.926	
WIIID DIIO-WU	PPM	HLLD	0.395	0.720	1.291	
		HLLE	0.424	0.748	1.265	
		Roe	0.375	0.643	1.118	

Table 1: single-core performance for baseline 3D Newtonian solver configurations. 64[^]3 uniform Cartesian mesh, VL2+PLM, Intel compiler 18.0.

- GPUs or x86?
- Motivations for highorder methods:
 - FLOPs are cheap
 - Increase data reuse
 - Exploit AVX-512

32-bit

- GPUs or x86?
- Motivations for highorder methods:

- GPUs or x86?
- Motivations for highorder methods:

- GPUs or x86?
- Motivations for highorder methods:

- Application is memory bandwidth bound
- Intel Turbo Boost causes frequency throttling

icc: -03 -std=c++11 -ipo -xhost
-inline-forceinline -qopenmp-simd
-qopt-prefetch=4

Athena++ scalability

on-node (2x 12-core) and off-node scaling

off-node scaling (using 64 of 68-core Xeon Phi)

Single-core performance

Full node performance

Fourth-order results

Circularly polarized Alfvén wave

12

Diagonal advection of field loop

 P_B

Diagonal advection of field loop

 P_B

Future work

- Candidate for release in next public version of Athena++, v1.2.0
- Computational cost and efficiency study:
 - Explore the zoo of algorithmic options in Athena++
- Fourth-order shearing box simulations
- Extend to grids with adaptive mesh refinement and general relativity

Thank you!