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Introduction

Today: Turbulence in compressing plasma

Three ingredients: 1. Plasma 2. Compression 3. Turbulence

Coexist in a variety of laboratory and natural systems. E.g.
● Inertial confinement fusion (laser compression)
● Astrophysical molecular clouds (gravitational compression)



  

Plasma

- A gas that is at least partially ionized

- Gas-like behavior, but with additional effects

Natural: 

Lightning, aurora, stars, ...

Laboratory: 

Fusion energy experiments, neutron sources, ...

High temperature → Ionization to plasma



  

Plasma viscosity unusual & important

● Plasma viscosity: stronger temperature (T) dependence; ionization 
state dependent (Z)

Heating

Ionization



  

Turbulence

For the purpose of this talk:

- Turbulence = ("disorganized") flow in the plasma/gas

- Will focus primarily on the energy in this turbulent flow, TKE (one property)

- Total energy is thermal/temperature (locally uncorrelated) plus flow (locally 
correlated)

Temperature (thermal energy) Flow energy 



  

The problem conceptually

Final partition?
Energy injected?

¾ thermal, ¼ turbulent

Compress adiabatically
(Ideal gas)

Final partition - Known
Energy injected - Known

PV = nRT ???

All thermal energy

Two plasmas, 
same initial energy
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Flow vs. temperature partition: many impacts

Understanding this partition important in applications:
● Affects thermal and particle transport, mixing
● Affects fusion and X-ray production
● Can confound diagnostics
● Could affect compressibility / energy injected by compression
● Density distribution impacts

Will discuss some of these impacts in context.



  

What was already known?
In fluid/gas literature – substantial: Aerodynamics/Combustion

In astro – a little

In plasma – ??
Guntsch & Friedrich in Flow Simulation with high-performance computers II (1996)

Turbulent energy (TKE)
can grow under 
compression (acts as a 
forcing)

Timescales important



  

What's new for plasma cases?
Size of compression:

● Combustion engine (V  V/10)→
● NIF (V  V/10000)→

Dominance of turbulent energy (TKE)
● Z-Pinch stagnation – TKE:Thermal ~ 2:1
● Molecular clouds – TKE:Thermal ~ 10:1

Properties & Processes:
● Viscosity (This alone causes existing fluid/gas models to fail)
● B fields, radiation



  

Filling in the gap
● Simulations (~1000s cpu hours each) paired with analytic calculations
● Will be showing plots like:

Davidovits & Fisch, PRE 94 053206 (2016)



  

Viscous behavior important & many possible
● T & Z can both be functions of L

(Balance of heating and cooling 
processes)

Different viscosity behavior during 
compression 

 → different results!

Davidovits & Fisch, PRE 94 053206 (2016)



  

Quick intro to inertial fusion

Needed for inertial fusion
● High temperature (gas will be a plasma)
● Self heating (capture He → high-density)

Laboratory fusion?
● Basic science
● Energy
● Stockpile stewardship



  

NIF/LLNL 
NIF/LLNL 



  

NIF/LLNL 

Q. Zhang, UCSB, DE-STAR



  

John Edwards, PPPL Colloquium 

John Edwards, PPPL Colloquium 



  

Want: All thermal (T)

Weber et al., Phys. Plasmas, 22 032702 (2015)

Have?: Mix of thermal (T) and 
turbulence (TKE)



  

Possible issues (non-exhaustive):

- “Mix” - cooling & introduction of high Z

- Hard to differentiate T vs Turb in experimental measurements

- Hydromotion not (directly) useful for fusion (or X-rays); "wasted" input 
energy if left in hydromotion.

Weber et al., Phys. Plasmas, 22 032702 (2015)



  

Hot, thermal

Flow/turbulence vs. temperature
Large relative motion   →
high fusion, lots of X-rays

Cold, flowing 

Same 
total 
energy Small relative motion   →

low fusion, few X-rays



  

In NIF: Turbulence may be an 
issue, may not be, but:

 - Checking a single case: high 
resource investment (ex. 5 
million cpu-hours)

Weber et al., Phys. Rev. E, 89 053106 (2014) → Lack of overarching understanding

● Can we get a gross sense of the TKE dynamics?

(Most detailed simulations will always have a place)



  

Bird's-eye view of NIF TKE behavior

Davidovits & Fisch, Phys. Plasmas 25 042703(2018) Davidovits & Fisch, Phys. Plasmas 24 122311 (2017)

● Modeling, 
ideally to be 
paired with 
1D, 2D, 
simulations

● Stability, gives map
● Saturation, "how bad 

can it possibly get"



  

Turbulence/hydromotion can be an issue

but

Can we also possibly utilize it?



  

New ignition paradigm
Usually:

1. Start with all T

2. Compress, steadily increasing T



  

New ignition paradigm
Usually:

1. Start with all T

2. Compress, steadily increasing T

Instead:

1. Start with mostly TKE (E)

2. Compress, increasing both TKE and 
T (but, colder → smaller losses?)

3. Convert TKE  →T at late stage Need a conversion 
mechanism!



  

Plasma has a conversion mechanism!

Heating

● Exists in plasma because of unique viscosity



  

Sudden viscous dissipation

Davidovits & Fisch, Phys. Rev. Lett., 116 105004 (2016) 

● Compression: Amplifies TKE, T, ... and the viscosity.



  

Sudden viscous dissipation animation



  

Sudden viscous dissipation
● Initial scale separation between energy injection (and containing) 

and energy removal

Injection primarily at largest scales, 
where most energy resides

Cascade to removal at 
smallest scales

L large L small

L large L small

L large L small

Time

L large L small



  

Viscous and inviscid regimes

● Been discussing: strongly heated 
compressions, crossing between 
inviscid and viscous regimes

● Understanding of viscous impacts 
useful even in highly inviscid 
compressing turbulence:

→ molecular clouds
Davidovits & Fisch, Phys. Rev. Lett., 116 105004 (2016) 

Weber et al., Phys. Rev. E, 89 053106 (2014)



  

Molecular clouds

● Cloud of partially ionized gas
● Highly turbulent (supersonic, 

Mt~10), inviscid (Re huge)

● Compressing under self-gravity
● Star forming regions

Turbulence  density distrubtion →
 star formation rate→

European Space Agency/Herschel/PACS/SPIRE/HOBYS



  

TKE level → density distribution

Robertson & Goldreich, ApJL 750 L31 (2012) 

t1 t2 t3Compressing in time

● Plotting plasma density (light  high, dark  low)→ →
● M = turbulent mach number (~flow velocity)



  

TKE level → density distribution

Robertson & Goldreich, ApJL 750 L31 (2012) 

t1 t2 t3

Red Green Blue

● Compression  increased TKE/M→ t  →
changing density PDF  more extreme →
density region, more "holes"  impacts star →
formation activity



  

Existing modeling efforts

● Analytic model with coefficient 
determined by numerical 
simulation

● Correct?

Robertson & Goldreich, ApJL 750 L31 (2012) 



  

Created class of semi-analytic bounds on TKE
● Created by understanding the impact of viscosity variation
● Applied as a validation tool to existing molecular cloud TKE model
● Indicates simulation/model overestimate the amount of dissipation

Davidovits & Fisch, ApJ 838 118 (2017) 



  

Supersonic plasma turbulence in the lab?
● Z-pinch compressions to generate X-rays (useful)

Time

Osin et al., IEEE Transactions on Plasma Science 39 2392 (2011)

Giuliani et al., Physics of Plasmas 21 031209 (2014)

Bert Hickman/Stoneridge Engineering

● Plasma compressed by magnetic 
field. Cylindrical geometry:

● Detailed measurements find 
large non-radial flow (Kroupp et 
al., PRL 107 105001 (2011)) 



  

● New picture: Supersonic turbulence in Z-pinch stagnation
● Better measurement agreement, physical consistency

● New spectroscopic analysis: account for density PDF

Supersonic plasma turbulence in the lab
Adapted from: 

Konstandin et al. 
MNRAS 460 4483 (2016)

Osin et al., IEEE Transactions on Plasma Science 39 2392 (2011)

Kroupp et al. (incl. Davidovits), 
Phys. Rev. E 97 013202 (2018)



  

● What makes these pinches so turbulent?
● Active area

● Plasma viscosity is enabling: 
X-ray generating pinches compressing high Z (NIF hydrogen)

Viscosity context

Ionization



  

Summary
Turbulence undergoes compression in a variety of scenarios

-Important impacts in lab experiments (inertial fusion, Z-pinch) and natural 
world (molecular clouds)

-Need for understanding of plasma impacts [this talk: viscosity]

Conducting simulations, building predictive models, bounds

Highlighted today:

- Sudden viscous dissipation & new inertial fusion design concept

- Bound on turbulent velocity in molecular clouds

- New Z-pinch picture: turbulent stagnation



  

For further information on this topic
●Davidovits & Fisch, Phys. Rev. E 94 053206 (2016)
●Davidovits & Fisch, Phys. Rev. Lett., 116 105004 (2016)
●Davidovits & Fisch, ApJ 838 118 (2017) 
●Davidovits & Fisch, Phys. Plasmas 24 122311 (2017)
●Kroupp et al., Phys. Rev. E 97 013202 (2018)
●Davidovits & Fisch, Phys. Plasmas 25 042703(2018)

Thank you!
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