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Time-domain linear PDEs in homogeneous medium
Diffusion Equation

Elastodynamics

Wave Equation, Maxwell’s Equations (including dispersive materials)

We treat here: Scalar wave propagation (scattering) in Rd

∂2u

∂t2
(r, t)− c2∆u(r, t) = 0, r ∈ Ω, (1a)

u(r, 0) =
∂u

∂t
(r, 0) = 0 (1b)

u(r, t) = h(r, t) for (r, t) ∈ Γ× [0,T ], (1c)

Sound-soft scattering conditions: h(r, t) = −ui (r, t)
Important classical problem:

Applications: photovoltaic efficiency, nanophotonics

Characterization of propagation in dispersive materials

Defense: RADAR, imaging systems
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Challenging problem! Previous work

Existing Numerical Methods:

Finite-difference / Finite-element
time domain (FDTD / FETD)

Direct solution of time-domain
integral equations

Convolution Quadrature
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Volumetric (FDTD/FETD) methods

Must discretize entire
volumetric grid

For exterior problems,
absorbing boundary conditions
(Perfectly Matched Layers)

Time-stepping =⇒ growing
cost for large time

Generally low-order accurate
methods =⇒ computationally
expensive

Numerical dispersion =⇒
multiple scattering is
problematic

PML (Berenger ’94):

Ref: Shin et al., JCP (2012)
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Convolution Quadrature: A true Hybrid method
Still a time-stepping method — with connections to discrete Laplace transform.
Use Z-transform relations for {ud(ti , r) : 1 ≤ i ≤ Nd}:

Ud(z ; r) =
∞∑
n=0

ud(tn, r)z
n, ud(tn, r) =

∫
C

Ud(z ; r)

zn+1
dz .

Hybrid frequency/time method — decoupled modified Helmholtz problems for Ud :

∆Ud − s2Ud = 0, Ud |Γ = Hs

Relies on a choice of A-stable
integrator: BDF2, RK

Two sources of temporal
approximation error

I Time-stepping error, smaller
∆t

I Contour integral error, more
Ud solutions

Ref: Betcke, SIAM J. Sci. Comput. (2017)
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Convolution Quadrature: Discussion

Advantages:

Hybrid algorithm decouples solution — Parallel in time

Boundary integral equations: Dimensional reduction!

Exploits fast frequency-domain solvers

Disadvantages:

Limited order of accuracy, dispersion due to finite differences

Fast solvers only demonstrated at low spatial order (linear Galerkin)

Increasing cost for large time

Need many frequency-domain solutions for full accuracy
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Time Domain Integral Equations
Focuses on representation formula:

u(r, t) =

∫ t

−∞

∫
Γ

G (r − r′, t − t ′)ϕ(r′, t ′)dσ(r′)dt ′ (2)

where

G (r, t) =


H(ct−|r|)

2π
√

(ct)2−|r|2
for d = 2 and

δ(ct−|r|)
4π|r| for d = 3.

(3)

Direct solution:∫∫
Γ(t)

G(r−r′, t−t′)ϕ(r′, t′)dσ(r′)dt′

= h(r, t), (r, t) ∈ Γ× [0,T ]

Difficult to ensure stability

Complex schemes

Low-order convergence
Ref: Ha-Duong, Topics in Comput. Wave Propag. (2003)
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Frequency-domain solvers: Boundary integral equations

Solution Method for Frequency-domain (Fourier-Time Transform) Analysis

∆U + ω2U = 0 in Ω (4a)

U = U i on Γ = ∂Ω (4b)

Notation:

Gω(r) =

{
i
4H

1
0 (ω|r − r′|) for d = 2 and

e iω|r−r′|

4π|r−r′| for d = 3.
(5)

Layer Potentials: U(r) =
∫

Γ
Gω(r, r′)ψ(r′)dσ — a solution to (4) for all ψ!To

satisfy boundary conditions, must satisfy for r ∈ Γ:

1st-kind integral equation: (Sωψ)(r) =

∫
Γ

Gω(r, r′)ψ(r′)dσ = U i (r)

2nd-kind integral equation:

[
−1

2
I + K∗ω + iηSω

]
(ψ)(r) = ∂νU

i (r) + iηU i (r)
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A Hybrid Approach

Use Fourier transformation:

u(r, t) =

∫ ∞
−∞

U(r, ω)e−iωtdω, (6)

Can use any frequency-domain solution, but for integral equations,

U(r, ω) =

∫
Γ

ψ(r′, ω)Gω(r, r′)dσ(r′). (7)

Frequency-domain solutions are obtained via transforming incident fields and
solving, e.g. with layer potentials,

(Sωψ)(r, ω) = −U i (r, ω) (8)

Questions to address:

How do we best exploit a Hybrid approach for HPC?

What quadrature rule is used?

How many frequency-domain problems need be solved? Relationship to t?
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Evaluating (Oscillatory) Fourier integrals

Task: Accurately approximate highly oscillatory integrands at O(1) cost:

u(t) =

∫ ∞
−∞

U(ω)e−iωtdω

Classical quadrature algorithms: Trapezoidal rule

u(tk) =

∫ T/2

−T/2

U(ω)e−iωtkdω ≈ T

m

m−1∑
j=0

U(ωj)e
−iωj tk

Can be accelerated with FFTs (and fast fractional DFTs)

Implies periodicity in u(t), fails to handle structure of Fourier kernel.

To manage spurious periodicity: refine ω discretization =⇒ O(N) large-time
cost and expensive frequency-domain solves.

Requires global regularity and periodicity for high-order convergence.
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New Quadrature Algorithm: Fourier Expansion

Idea: expand integrand in new basis

U(ω) ≈
N/2−1∑

m=−N/2

cme
i πW mω

A signal with finite bandlimit U(ω).

Then, evaluating term-by-term exactly,

u(t) =

∫ W

−W
U(ω)e−iωt dω ≈

N/2−1∑
m=−N/2

cm

∫ W

−W
e i

π
W (m−W

π t)ω dω

Integrating exactly and evaluating on t` = `∆t,

u(t`) =

N/2−1∑
m=−N/2

cmbβ`−m, where β =
W

π
∆t and bq = 2W sinc(q)
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Fourier Quadrature: Generalizing
On [a, b], more generally,

I ba [F ](t`) =

∫ b

a

F (ω)e−iωt`dω

= δe−it`γ
∫ W

−W
F (γ + δω)e−iτ`ωdω,

If F 6∈ Cper ([a, b]), use Fourier Continuation to produce Fourier coefficients.
I High-order (10th-order and higher) interpolation.

Ref: Amlani & Bruno, JCP (2016)

Fourier series interpolant in [a, b]:

F c(γ + δω) =

N/2−1∑
m=−N/2

cme
i 2π

P mω

Use F c ≈ F for quadrature rule.
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Generalized Fourier Quadrature Rule: Analysis
We have the quadrature rule:

I ba [F ](t`) = δe−it`γ
N/2−1∑

m=−N/2

cm

∫ W

−W
e−i

2π
P (β`−m) dω, β =

δP

2π
∆t

= δe−it`γ
N/2−1∑

m=−N/2

cmbβm−`, where bq := 2W sinc(
2W

P
q)

For L1 ≤ ` ≤ L2, defines a scaled convolution. Fast algorithms exist to
evaluate in O(M logM) time, M = max(N, L2 − L1).

I Uses Fractional Fourier Transforms and FFTs. Ref: Nascov & Logafotu (2009).

Quadrature rule requires O(1) coefficients for uniform error as t →∞.
I Dispersionless

For F ∈ Cper , O(e−αN) convergence.

For F 6∈ Cper , cf. Trapezoidal rule: O(1/N) convergence.
I We observe high order convergence, e.g. O(1/N10).
I Still a spectral (dispersionless) method
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Numerical results: Fourier quadrature rule (periodic)

Maximum error as a function of time
discretization ht (Forward).

Maximum error as a function of
frequency discretization hω (Inverse).
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Overall hybrid algorithm

Given (incoming) boundary conditions: uinc(r, t), r ∈ Γ

1 Fourier transform to obtain U inc(r, ω).

2 Solve frequency-domain problems for relevant ω[
−1

2
I + K∗ω + iηSω

]
(ψ)(r, ω) = −

(
∂νU

inc(r, ω) + iηU inc(r, ω)
)

3 For each desired point r ∈ Ω, compute

U(r, ω) =

∫
Γ

ψ(r′, ω)Gω(r, r′) dσ(r′).

4 Inverse transform:

u(r, t) =

∫ ∞
−∞

U(r, ω)e−iωt dω, (9)

When solving wave equation in R2, nonsmooth behavior as ω → 0±. Use
Filon-Clenshaw-Curtis and nonperiodic Fourier rule.
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Plane wave incident on kite scatterer in R2

Hybrid method solution with Gaussian-modulated plane wave incidence:

U inc(r, ω) = e−
(ω−ω0)2

σ2 e iω
k
||k|| ·r, where ω0 = 12, σ = 2, k = ex +

1

2
ey .
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Convergence

Solution trace at observation point
(2,2).

All-time L∞ error as function of freq.
discretization refinement hω.
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Long-duration incident waves

Dominant cost of Hybrid method: Frequency-domain solutions
I Enables parallelization
I Number of solutions dependent on complexity of incident field

Challenge when time-dependent field has long duration:

Figure: Smooth linear chirp signal, large t Figure: Fourier transform of linear chirp
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Temporal Partition of Unity

Recall problem:

∂2u

∂t2
(r, t)− c2∆u(r, t) = 0, r ∈ Ω,

u(r, t) = h(r, t) for (r, t) ∈ Γ× [0,T ].

Define a partition of unity of time. Let sk ∈ [0,T ] and windowing functions wk :

1 wk(t) = 1 in neighborhood of t = sk ,

2 wk(t) = 0 for |t − sk | > H,

3
∑K

k=1 wk(t) = 1 for all t ∈ [0,T ].

Partition incident wave

Hk(r, ω) =

∫ ∞
−∞

wk(t)h(r, t)e iωt dt, Hslow
k (r, ω) = e−iωskHk(r, ω).

Apply hybrid method: solve frequency-domain problems for Uk with Hk boundary
conditions.
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What does the partition of unity yield?

Windowed Fourier Transform,
partition sk = 0.

Windowed Fourier Transform,
partition sk = −55.
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Temporal Partition of Unity II
Build time-partitioned solutions using Fourier shifting:

uk(r, t) =
1

2π

∫ ∞
−∞

Uk(r, ω)e−iωt dω =
1

2π

∫ ∞
−∞

Uslow
k (r, ω)e−iω(t+sk ) dω.

In practice,

uWk (r, t) =

∫ W

−W
Uslow
k (r, ω)e−iω(t+sk ) dω

and the overall solution is reconstituted as:

u(r, t) =
K∑

k=1

uk(r, t) ≈
K∑

k=1

uWk (r, t)

Overall this allows efficient long-time computation.

Note: Hslow
k (r, ω) = e−iωskHk(r, ω)

I Implies we can re-use frequency-domain solutions! Use linearity..

Need not compute uWk (r, t) for every r, t. Track when windows are active.
I Reliant on geometrical considerations and BIE densities.
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Time-partitioning for long incident duration
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Time-tracking of active windows
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Example: Whispering Gallery
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Questions?
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