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Just FY1: this work is based on our paper; Communication-Avoiding
Optimization Methods for Distributed Massive-Scale Sparse Inverse
Covariance Estimation, which grew out of my practicum
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What is “sparse inverse covariance estimation’?

Let's break it down, piece-by-piece ...



“covariance estimation’”
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» Suppose we observe n p-dim. Gaussian rv.'s ~ N (0, Xg)
- And we're interested in estimating 2o ; what do we do?
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-
Problem # |:the log-likelihood is not convex in X € SZ_?HJ

. (but it is convex inQ =X € SE )
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- But we can still compute the sample cov. matrix; it's just:

Z o —XTX €G- (X = the “design matrix” = nxp)

Problem #2:the sample cov. matrix is singular if p > n
(can be written as the sum of n rank-one matrices)




“covariance estimation’”

- But we can still compute the sample cov. matrix; it's just:

Z o —XTX €G- (X = the “design matrix” = nxp)

Problem #2:the sample cov. matrix is singular if p > n
(can be written as the sum of n rank-one matrices)

Problem #3:the sample covariance matrix is a “bad”
estimate of 2pif p > n




"(sparse) inverse covariance estimation”

- Simple fix for problem #| (nonconvexity): change
variables and minimize over Q = X! ie., we now solve

minimize — logdet {2 + tI‘(SQ) (convex)
QeSt

- Subtle fix for problems #2,3 (bad estimate): add
regularization, i.e., we now solve

minimize — logdet {2 + tI‘(SQ) + )\HQHl (still convex)
QeS’

* l
.
-

(elementwise LI norm = sum up the absolute
values of the entries of the argument)



'sparse Inverse covariance estimation”

- Another (nonobvious) benefit of regularization:

- The regularized estimate gives rise to a sparse graph, where...

- Vertices = variables

- Edges = two variables are (conditionally) independent given all the others

» S0, the regularized estimate has useful interpretability properties
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Computational approach

* We want to solve (same optimization problem from two slides ago):

minimize — logdet )+ tr(SQ) 4+ A||Q|1
Qes’

» A popular choice: use something like the backward Euler discretization
(actually: a proximal gradient method); see Parikh & Boyd (2014)
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* We want to solve (same optimization problem from two slides ago):

minimize — logdet )+ tr(SQ) 4+ A||Q|1
Qesh |

» A popular choice: use something like the backward Euler discretization
(actually: a proximal gradient method); see Parikh & Boyd (2014)

» The main computational bottlenecks turnlout to be:
- Computing the dense-dense product § = ~XTX:  O(p*n)
- Computing the dense-sparse product S M O(p?’)

* We use recent communication-avoiding algorithms (Ballard et al,, 2014) to
compute these quantities in a distributed environment (Edison, Eos); toy
example on the next slide
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Empirical evaluation

- Used our method to make progress on a
challenging problem in neuroscience:“which
parts of the human brain work together?”

- Starting point: functional magnetic resonance
imaging (MRI) data set, from the Human
Connectome Project, where n = # of
patients, p = # of voxels = 91,282 (hard)

» Our approach:
Run our method on the data, get a graph

Segment the graph into connected components (vertices =
voxels), get a clustering

Compare to baseline from the neuroscience literature




Numerical results

* Baseline = Glasser et al.
(2016), generated by hand
+ Our method gets:
Area 55b (hearing)

Lateral intraparietal cortex
(eye movement)

Left hemisphere Right hemisphere

Temporal cortex (information
processing)

MT

Glasser et al. (2016)

Other methods miss these
(overly smooth)

« QOur method misses:

Brodmann’s area 44 (hearing +
speaking)

Our method

Middle temporal visual area
(seeing moving objects)



)ISCUSSION

Presented a method for sparse inverse covariance
estimation, from very large-scale data

QOur method is much more scalable than other methods in the
iterature (didn’t have time to get into this)

- Applied the method to generate a segmentation of the
cerebral cortex, from fMRI data

« The method recovered the structure in the data without

being told how, performed comparably to strong baseline

Thanks for listening!



