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Not matter in a nucleus, rather an infinite system of
nucleons
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Not matter in a nucleus, rather an infinite system of
nucleons

Symmetric nuclear matter, N = Z
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Not matter in a nucleus, rather an infinite system of
nucleons

Symmetric nuclear matter, N = Z
Neutron matter, Z =0, A= N
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Not matter in a nucleus, rather an infinite system of
nucleons

Symmetric nuclear matter, N = Z
Neutron matter, Z =0, A= N

Volume and particle numbers are infinite but ratios are
finite
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Who cares?
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Appendix

Who cares?

Decent first approximation for

Neutron Star

Mass ~ 1.5 times the Sun
~12 miles in diameter

Solid crust
~1 mile thick

Heavy liquid interior
Mostly neutrons,
with other particles

208p}, 10 fm,
~ 1072 kg neutron star, ~ 10 km, ~ Mgolar

W
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Low densities similar to unitary limit in cold atom systems
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Low densities similar to unitary limit in cold atom systems

Can be used to constrain or eliminate some of the 300+
nuclear energy density functionals
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Low densities similar to unitary limit in cold atom systems

Can be used to constrain or eliminate some of the 300+
nuclear energy density functionals

pedagogically, e.g.

2(Z-1)  (N-2Z2)?

_ 2/3
E(N,Z)=ayvA—asA 3 — ac WE —ay i

can constrain ay,ay.
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Ground state properties are (partially) understood

Several competing equations of state (EOS)



Neutron Matter Quas S i Many Body Methods

000e 00 [e]e]e]e]e]e]e)

Ground state properties are (partially) understood
Several competing equations of state (EOS)

Excited states remain unexplored
Would like to understand excited states of this system to:

Constrain some EDFs
Describe neutron stars and neutron-rich nuclei
Extend to symmetric nuclear matter
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Ground state properties are (partially) understood
Several competing equations of state (EOS)
Excited states remain unexplored

Would like to understand excited states of this system to:
Constrain some EDFs
Describe neutron stars and neutron-rich nuclei
Extend to symmetric nuclear matter
In particular, would like to determine the quasiparticle
spectrum of neutron matter.
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Basic ideas of Fermi Liquid Theory

Landau assumed a one-to-one correspondence between
single particle states of free Fermi gas (FFG) and
elementary excitations (quasiparticles) of interacting
system:

= W
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Basic ideas of Fermi Liquid Theory

Landau assumed a one-to-one correspondence between
single particle states of free Fermi gas (FFG) and
elementary excitations (quasiparticles) of interacting

system:
FEG:
€omoeen
S 2
o=
0E=F — Ey = —on
3,/ 0 Z 2m P
p
o
e ——— Interacting system:
—— r—— SE~Y " e on,
_— P \
FFG Int i
meeene quasiparticle energy w
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If we add/subtract one single particle then:

B
P oy,
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If we add/subtract one single particle then:
oE

Ep = .
P
ony

So we compute quasiparticle spectrum with the convention:
1
ep = E(p, N =1) — 5 (Eo(N) + Eo(N —2)).

and fit parameters such that

6p:\/<p2/2m* + U — ,u)2—|— A°
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If we add/subtract one single particle then:
oE

Ep = .
P
ony

So we compute quasiparticle spectrum with the convention:
1
ep = E(p, N —1) = 5 (Eo(N) + Eo(N —2)).

and fit p§rameters such that

2
Ep

\/(p2/2m* +U - u)2+ A

Compute this
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If we add/subtract one single particle then:
oE

Ep = .
P
ony

So we compute quasiparticle spectrum with the convention:
1
ep = E(p, N =1) — 5 (Eo(N) + Eo(N —2)).

and fit parameters such that

6p:\/<p2/2m* + U — ,u)2—|- A°

Fit these
effective mass
self-energy
chemical potential

pairing gap W
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QCD is the theory of nuclear interactions
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Quantum Chromodynamics

3 colors

6 flavors
(u,d,s, ¢, b, 1)

Vertices

Makes
life
interesting
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nn interaction
@00

Quantum Chromodynamics

vector meson |  octet baryon

decuplet baryon
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Basic EFT idea:
pick different degrees of freedom (e.g. quarks — nucleons)
find two different scales of the problem

expand in powers of ratio of different scales
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Basic EFT idea:
pick different degrees of freedom (e.g. quarks — nucleons)
find two different scales of the problem
expand in powers of ratio of different scales

What scales should we pick for nucleon-nucleon interaction?
p p

0
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Basic EFT idea:
pick different degrees of freedom (e.g. quarks — nucleons)
find two different scales of the problem
expand in powers of ratio of different scales

What scales should we pick for nucleon-nucleon interaction?
p p

0

n n

Soft scale: @ ~ m,; ~ 140 MeV — 0
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Basic EFT idea:
pick different degrees of freedom (e.g. quarks — nucleons)
find two different scales of the problem
expand in powers of ratio of different scales

What scales should we pick for nucleon-nucleon interaction?
p p

0

n n

Soft scale: @ ~ m,; ~ 140 MeV — 0
Hard scale: A =~ my ~ 939 MeV — oo
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Basic EFT idea:
pick different degrees of freedom (e.g. quarks — nucleons)
find two different scales of the problem
expand in powers of ratio of different scales

What scales should we pick for nucleon-nucleon interaction?
p p

0

n n

Soft scale: @ ~ m,; ~ 140 MeV — 0
Hard scale: A =~ my ~ 939 MeV — oo
Expand in powers of (Q/A)".



Chiral EFT
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Propagation in imaginary time yields ground state

e~ yr) =5 |y, assuming (¥r|v) # 0.
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Propagation in imaginary time yields ground state

e ) =5 o), assuming (¥r|tho) # 0.

In practice we take many small steps (Suzuki-Trotter
decomposition):

He 2 ATV) ( "I?) |”(/JT>+O(AT2).



Neutron Matter Quasiparticles nn interaction Many Body Methods Results

Appendix

[e]e]e]e] 00 [e]e]e} [ Jeefele]e]e] [e]e]e]e]o]e]

Propagation in imaginary time yields ground state

e~ yr) =5 |y, assuming (¥r|v) # 0.

In practice we take many small steps (Suzuki-Trotter
decomposition):

ATR

Al ~ ~
9) = [[ L)l AN R ) +0 (ar%)

Use Hubbard Stratonovich Transformation
(pedagogical case for operator A):

A —02/2) (amA)dU

1 / o (

— e e

EQJ
Auxiliary field
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Recap:

|[v0) =

WT |V(q)|e*AT|V(q)HU‘267’yAT57

21

,’:]z

—00

Integral of the form / e’ f(z)dz. Use Gaussian quadrature

- 5
/ e f(z)dx = > wif(z;) + 0 (A7)

S G i=1
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—ar? _ /Oo dodo™ AT V(@) —arv(g)iol? ,—varo
e 21 '

Integral of the form / e’ f(z)dz. Use Gaussian quadrature

- 5
/ e f(z)dx = > wif(z;) + 0 (A7)

S G i=1

5x5 possible o configurations at each site on N, N, N, N lattice.
Massive 25N=VyN=Nr configurations space. w
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In QMC, expectation value of some observable A is

where Ao] = (9[o]|Al¥[o]) and |[]o]) = =™ |4y

average over configurations o, weighted by plo].
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In QMC, expectation value of some observable A is

where Ao] = (9[o]|Al¥[o]) and |[]o]) = =™ |4y

average over configurations o, weighted by plo].

If p[o] > 0, interpret as probability measure, continue with
MC.
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In QMC, expectation value of some observable A is

where Ao] = (9[o]|Al¥[o]) and |[]o]) = =™ |4y

average over configurations o, weighted by plo].

If p[o] > 0, interpret as probability measure, continue with
MC.

But for fermionic systems, p[o] can be negative in general.

Importance sampling cannot be used.
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In QMC, expectation value of some observable A is

where Ao] = (9[o]|Al¥[o]) and |[]o]) = =™ |4y

average over configurations o, weighted by plo].

If p[o] > 0, interpret as probability measure, continue with
MC.

But for fermionic systems, p[o] can be negative in general.
Importance sampling cannot be used.
No general solution, NP Hard (Troyer and Wiese, PRL

(2005)) W
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Sign problem avoidance strategy #1

Some systems/Hamiltonians are sign-problem free
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Sign problem avoidance strategy #1

Some systems/Hamiltonians are sign-problem free
V(i) <0=~v==£1,V(q) >0=v==%:
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Sign problem avoidance strategy #1

Some systems/Hamiltonians are sign-problem free

V() <0=~v==%x1,V(q) >0=~==i

Do AFQMC time evolution with sign-problem free , then
measure observables with H,.

~

= (f+IZU)+(I7X—Vw) = Hey + 6V.
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Sign problem avoidance strategy #1

Some systems/Hamiltonians are sign-problem free
V() <0=~v==%x1,V(q) >0=~==i
Do AFQMC time evolution with sign-problem free , then
measure observables with H,.
fm (T4 0) 4 (P i) = Tl 7.

Works as long as Vg, is fitted to V.
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Sign problem avoidance strategy #1

Some systems/Hamiltonians are sign-problem free

V() <0=~v==%x1,V(q) >0=~==i

Do AFQMC time evolution with sign-problem free , then
measure observables with H,.

H= (f-q-f/w) + (?X—IZU) = Hep + V.
Works as long as Vg, is fitted to V.

Probability measure plo] ~ < Yr | e Moy >

Slater determinant trial Wave%resieﬂ—
Evolved wavefunction (still Slater determinan
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Sign problem avoidance strategy #1

Some systems/Hamiltonians are sign-problem free

V() <0=~v==%x1,V(q) >0=~==i

Do AFQMC time evolution with sign-problem free , then
measure observables with H,.

H= (f-q-f/w) + (?X—IZU) = Hep + V.
Works as long as Vg, is fitted to V.

Probability measure plo] ~ < Yr | e Moy >

Slater determinant trial Wave%resieﬂ—
Evolved wavefunction (still Slater determinan

If Ny =N, p>0
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Sign problem avoidance strategy #2

Insert 1 in crafty ways to get positive weight factors.

| DoPn(0)E(0)
. fDO‘PN_l(O')E(O')

(B - 1) = L2780
 [DoPy(0) A5 E(0) [ DoPy
- J DoPy(o) [ DoPy

(%)

Nakamura, Hatano, and Nishimori J. Phys. Soc. Jpn. (1992)

W
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Sign problem avoidance strategy #2

Insert 1 in crafty ways to get positive weight factors.
[ DoPn(0)E(0)
E(N)) =
fDO‘PN_l(O')E(O')
E(N -1)) =
_ [ DoPy(o) BAFE@)  [DoPy
Do Py (o) fDaPNPgAjl

_ [ gty Pyn_1
Py Py
Nakamura, Hatano, and Nishimori J. Phys. Soc. Jpn. (1992)

Ratio of expectation values, both with positive weight.

W
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Sign problem avoidance strategy #2

Real part of re-weighting factor is important and must be
distinguishable from noise.
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Sign problem avoidance strategy #2

Real part of re-weighting factor is important and must be
distinguishable from noise.

The decay of the real part into the imaginary noise is an
indication of the re-emergence of the sign problem.
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Re-weighting Methods

RE-EMERGENCE Of SIGN PROBLEM

T REAL PART

IMAGINARY NOISE

®
Q
E
Q
e
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I}
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./‘\/"'V\' Ve I\l"

IMAGINARY TIME
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Results
[ ]

What does the quasiparticle spectrum look like?

n=0.0161 fm=>

n=0.0197 fm*

o0 m—0.985

U—p= —13.050 McV : U=p= = 16.547 MelV?
A=0.692 MeV

A=1.284 MeV
e rre = 12,480 MeV eprg = 14.299 MeV'
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Three body interactions

2
<ylHEJy> —e— 10
<YIHE N> e 8

0.04 0.06
density, n




Results
o

What we can say so far

n=0.0197 fm*

n=0.0340 fm =3

=0.0876 fm 3
m line
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Finish this individual study:

Three-body interactions
Off lattice momenta

Results
000800
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Finish this individual study:

Three-body interactions
Off lattice momenta

Calculate NM spin susceptibility.

Results
000800

Apper
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Finish this individual study:

Three-body interactions
Off lattice momenta

Calculate NM spin susceptibility.
Neutron matter at finite temperatures

Investigate symmetric nuclear matter (i.e. add protons).
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Finish this individual study:

Three-body interactions
Off lattice momenta

Calculate NM spin susceptibility.
Neutron matter at finite temperatures
Investigate symmetric nuclear matter (i.e. add protons).

Apply to nuclei, e.g. *°Sn
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Some problems are simple, but not easy.
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Some problems are simple, but not easy.

e.g., subtracting two large, similar numbers:

p0 = B(p, N — 1) — 5 (Bo(N) + Eo(N ~2)).
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Some problems are simple, but not easy.

e.g., subtracting two large, similar numbers:
1
epo = E(p,N — 1) — 3 (Eo(N) + Eo(N —2)).

CSGFellows are well equipped to answer these problems.
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Some problems are simple, but not easy.

e.g., subtracting two large, similar numbers:
1
epo = E(p,N — 1) — 3 (Eo(N) + Eo(N —2)).

CSGFellows are well equipped to answer these problems.

Do these first before the “complicated” problems.
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Some problems are simple, but not easy.

e.g., subtracting two large, similar numbers:
1
epo = E(p,N — 1) — 3 (Eo(N) + Eo(N —2)).

CSGFellows are well equipped to answer these problems.
Do these first before the “complicated” problems.

You might never run out of the simple, hard problems.
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Why do we average energies for N, N — 2 in

po = B(p, N — 1) — 5 (Bo(N) + Eo(N ~2)).



Appendix A: Pairing Effects in NM

() Odd mass number
1 stable oe or eo
(105 nuclides)

() Even mass number
1 stable ee
(78 nuclides)

(I Even mass number
1 stable 0o
(4 nuclides)

(IV) Even mass number
2 stable ee
(83 nuclides)

(V) Even mass number
3 stable ee
(3 nuclides)

FIG. 3.6. Isobar parabolas for odd mass numbers (I: odd-even or even-odd nuclides) and for
even mass numbers (cases 11 - V). The stable nuclides are indicated by heavier dots.
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NUCLEAR PAIRING

PAIRING GAP

PARTICLE NUMBER
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At large distances assume:

Q,b ~ eikz N w ~ eikz + f(e)
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At large distances assume:
. _ ikr
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scattering amplitude
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At large distances assume:

Q,b ~ eikz N w ~ eik:z + f(e)

scattering amplitude
yields differential cross-section

do _ 2
=1

For central potential f(0) can be expanded as
_ 1 2idy
F0) = 5= ;(%—k 1) (e 1) Py (cos 6)
where dy are the phase shifts, and

47 :
Otot = 73 Z (20 4 1) sin® 54(k)
L
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In the low momentum limit

1 1
kcoté(k)z———i-ﬁ re k2 +...
a
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In the low momentum limit

1 1
kcoté(k)z———i-ﬁ re k2 +...

a
scattering length \JJ
effective range
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Appendix B: Basic Scattering Theory

No bound states Bound state with E,=0
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At low densities, EOS determined by s-wave
neutron-neutron interaction.
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Similar to cold atoms

At low densities, EOS determined by s-wave
neutron-neutron interaction.

Bertsch proposed model of low density neutron matter with
zero-range interaction tuned to infinite scattering length
(unitary limit).
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Similar to cold atoms

At low densities, EOS determined by s-wave
neutron-neutron interaction.

Bertsch proposed model of low density neutron matter with
zero-range interaction tuned to infinite scattering length
(unitary limit).

E=tBro= ik, kp= (3r)°)

A:E(N+1)—%[E( )+E(N+2)]_5EF—5h—2krF

W
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Consider 1-D integral F = / f(z)dz.
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Central limit theorem tells us
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=i\

Many ways to pick the points x;:

Uniform grid } Good for low dimensions.

Gaussian quadrature
4 Cost ~ N¢

Simpson’s rule
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b
Consider 1-D integral F = / f(z)dz.

Central limit theorem tells us

_(-a < Nosgo
Ey = > fl@i) =S E.
=i\

Many ways to pick the points x;:

Uniform grid
. & Good for low dimensions.
Gaussian quadrature

g : Cost ~ N¢
Simpson’s rule
Random selection by Monte Carlo methods

N
By =0-a)( =23 @)+ 0 (YVA).
=1
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[e]e]e]e]e] Jelele]ele]e]e]e}

Many functions have weight in only a few regions
Uniform sampling is inefficient

Solution: increase density of points in regions of interest by
sampling from probability distribution p(x)

where w(z) approximates f(x).
b
B= [ g@p)ds~ 5 Y g,

where g(z) = f(z)/p(z).
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Importance sampling is easy if you already know the shape
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The Metropolis algorithm finds the shape of f(z) by
random walk.

Given two points in configuration space p and v, choose
transition probabilities to satisfy Boltzmann (or some
other) distribution
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Importance sampling is easy if you already know the shape
of f(z).

The Metropolis algorithm finds the shape of f(z) by
random walk.

Given two points in configuration space p and v, choose
transition probabilities to satisfy Boltzmann (or some
other) distribution

P(N%V) Pu

Break transition probability into selection and acceptance
probabilities

PW=v) _pv _ p-n

P(p—v)=g(p—v)A(p —v).
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Importance sampling is easy if you already know the shape
of f(z).

The Metropolis algorithm finds the shape of f(z) by
random walk.

Given two points in configuration space p and v, choose
transition probabilities to satisfy Boltzmann (or some
other) distribution

P(N%V) Pu

Break transition probability into selection and acceptance
probabilities

PW=v) _pv _ p-n

P(p—v)=g(p—v)Alp—v).

Create algorithm which generates random states by
g(p — v), accept those transitions with A(u — v). w
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Use power counting to determine which diagrams to include

y:—2+2A—20+2L+zi:(di+%—2>

where

A — nucleons involved in interaction,

C — separately connected pieces,

L — pion loops,

d; — derivatives or mass insertions, m,
n; — nucleon field operators.
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Use power counting to determine which diagrams to include

y:—2+2A—20+2L+zi:(di+%—2>

where

A — nucleons involved in interaction,

C — separately connected pieces,

L — pion loops,

d; — derivatives or mass insertions, m,
n; — nucleon field operators.

Adding a nucleon increments v, so we expect
Vax>Vea>Vi>. ..
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A=2,C=1,L=O,di=1,ni=2
}| — v =0 (LO),(Q/A)°.
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u:—2+2A—20+2L+Z<di+%—2)

A=2,C=1,L=O,di=1,ni=2
""" = v =0 (LO),(Q/A)°.
TS VA= O1E k05— L= =)

— v =2, (NLO), (Q/A)?.
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Adding/removing only one quasiparticle, we have

oE
OE = Z‘Epa(snpa = Epo = ——

o G

For multiple particles

oF = Z epo.dnpo' 2V Z Jp101p2020Mp151 OTpy 0y

pP101p202

e = B o — f on
po — po V pop2029Tipaoa

P202

5%E de

_ _ p1o1
fp10'11’20'2 — V(; 5 — Vé’

Mp1o10Mpyos Npyos
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Appendix G: Off lattice momenta
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Appendix G: Off lattice momenta

n=0.0340 fm=3

. 844
547 MeV
=5.912 MeV

"

20
p?/2m
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[e]e]e]e]e]e]e]ele]e]e] Jo]e)

Instead of using periodic boundary conditions (PBC),
where

Y(r1+ Lyra,...,mn) =U(r1,r2,...,TN)

Use twisted boundary conditions (TBC) where
,(b(’rl aF L3T27 LRI a""n) — eio,(b(’rl?r?a o 7TN)

Corresponding momenta

On-lattice momenta -/J
Shift by arbitrary amount

t~
Sl
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Shifted wavefunctions can be written
¥(2) = p(2)e'?, where p(z) = p(z + L)
Then the single particle TDSE becomes

p(p; +6/L)*

ihaﬂ/}j = h@bj - ihatQOj = om

®+vp;
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Shifted wavefunctions can be written
¥(2) = p(2)e'?, where p(z) = p(z + L)
Then the single particle TDSE becomes

p(p; +6/L)*

®+vp;

Can keep our existing computational framework

Time evolve with adjusted kinetic energy operator

Compute observables with extra phase factor e
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