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Volume and particle numbers are infinite but ratios are
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Why do nerds care?

Low densities similar to unitary limit in cold atom systems

Can be used to constrain or eliminate some of the 300+
nuclear energy density functionals

pedagogically, e.g.

E(N,Z) = aVA− aSA2/3 − aC
Z(Z − 1)

A1/3
− aI

(N − Z)2

A

can constrain aV , aI .
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Goal: compute quasiparticle properties of neutron
matter

Ground state properties are (partially) understood

Several competing equations of state (EOS)

Excited states remain unexplored

Would like to understand excited states of this system to:

Constrain some EDFs
Describe neutron stars and neutron-rich nuclei
Extend to symmetric nuclear matter

In particular, would like to determine the quasiparticle
spectrum of neutron matter.
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What’s a quasiparticle
Basic ideas of Fermi Liquid Theory

Landau assumed a one-to-one correspondence between
single particle states of free Fermi gas (FFG) and
elementary excitations (quasiparticles) of interacting
system:

FFG:

δE = E − E0 =
∑
p

p2

2m
δnp

Interacting system:

δE ≈
∑
p

εp δnp

quasiparticle energy
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Quasiparticle Spectrum

If we add/subtract one single particle then:

εp =
δE

δnp
.

So we compute quasiparticle spectrum with the convention:

εp = E(p,N − 1)− 1

2
(E0(N) + E0(N − 2)) .

and fit parameters such that

εp =

√(
p2/2 m∗ + U − µ

)2
+ ∆

2
.

Compute this
Fit these

effective mass
self-energy
chemical potential
pairing gap
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Quantum Chromodynamics

QCD is the theory of nuclear interactions

Wilczek, Phys. Today (2000)

Hayano, Hatsuda, Rev. Mod. Phys. (2010)

Good agreement with experiment

Very difficult to calculate things

Estimates for NNN interaction from LQCD have units of
exaflop-years.
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Chiral EFT
Basic EFT idea:

pick different degrees of freedom (e.g. quarks −→ nucleons)

find two different scales of the problem

expand in powers of ratio of different scales

What scales should we pick for nucleon-nucleon interaction?

π0

n

p

n

p

Soft scale: Q ≈ mπ ≈ 140 MeV→ 0

Hard scale: Λ ≈ mN ≈ 939 MeV→∞
Expand in powers of (Q/Λ)ν .
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Chiral EFT

Machleidt, Entem, Phys. Reports (2011)
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Auxiliary Field Quantum Monte Carlo

Propagation in imaginary time yields ground state

e−τĤ |ψT 〉
τ→∞−→ |ψ0〉 , assuming 〈ψT |ψ0〉 6= 0.

In practice we take many small steps (Suzuki-Trotter
decomposition):

|ψ〉 =
N∏
j=1

e

(
−∆τK̂

2

)
e(−∆τV̂ )e(−

∆τ
2
K̂) |ψT 〉+O

(
∆τ2

)
.

Use Hubbard Stratonovich Transformation
(pedagogical case for operator A):

eβA
2

=
1√
2π

∫ ∞
−∞

e

(
− σ

2
/2
)
e

(
σ
√

2βA
)
d σ

Auxiliary field
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The Need for MC Integration

Recap:

|ψ0〉 =

N∏
j=1

e

(
−∆τK̂

2

)
e(−∆τV̂ ) e(−

∆τ
2
K̂) |ψT 〉+O

(
∆τ2

)
.

e−∆τV̂ =

∫ ∞
−∞

dσdσ∗∆τ |V (q)|
2π

e−∆τ |V (q)||σ|2e−γ∆τ v̂,

Integral of the form

∫ ∞
−∞

e−x
2
f(x) dx. Use Gaussian quadrature

∫ ∞
−∞

e−x
2
f(x) dx =

5∑
i=1

wif(xi) +O
(
∆τ5

)
5x5 possible σ configurations at each site on NxNyNzNτ lattice.
Massive 25NxNyNzNτ configurations space.
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The Sign Problem

In QMC, expectation value of some observable A is

〈A〉σ =

∫
DσA[σ]p[σ]∫
Dσp[σ]

,

where A[σ] = 〈ψ[σ]|A|ψ[σ]〉 and |ψ[σ]〉 = e−H[σ]τ |ψT 〉
average over configurations σ, weighted by p[σ].

If p[σ] ≥ 0, interpret as probability measure, continue with
MC.

But for fermionic systems, p[σ] can be negative in general.

Importance sampling cannot be used.

No general solution, NP Hard (Troyer and Wiese, PRL
(2005))
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Evolution Potentials
Sign problem avoidance strategy #1

Some systems/Hamiltonians are sign-problem free

V (q) < 0⇒ γ = ±1, V (q) > 0⇒ γ = ±i
Do AFQMC time evolution with sign-problem free H, then
measure observables with Hχ.

Ĥ =
(
T̂ + V̂ev

)
+
(
V̂χ − V̂ev

)
= Ĥev + δV̂ .

Works as long as Vev is fitted to Vχ.

Probability measure p[σ] ∼
〈
ψT

∣∣∣∣ e−H[σ]τψT

〉
.

Slater determinant trial wavefunction
Evolved wavefunction (still Slater determinant)

If N↑ = N↓, p > 0
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= Ĥev + δV̂ .

Works as long as Vev is fitted to Vχ.

Probability measure p[σ] ∼
〈
ψT

∣∣∣∣ e−H[σ]τψT

〉
.

Slater determinant trial wavefunction
Evolved wavefunction (still Slater determinant)

If N↑ = N↓, p > 0



Neutron Matter Quasiparticles nn interaction Many Body Methods Results Appendix

Evolution Potentials
Sign problem avoidance strategy #1

Some systems/Hamiltonians are sign-problem free

V (q) < 0⇒ γ = ±1, V (q) > 0⇒ γ = ±i
Do AFQMC time evolution with sign-problem free H, then
measure observables with Hχ.
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Evolution Potentials
Sign problem avoidance strategy #1

Wlazlowski, et. al. PRL (2014)

εpσ = E(p,N − 1)− 1

2

(
E0(N) + E0(N − 2)︸ ︷︷ ︸

)
.

This gives us the needed even energies

What about the odd system?
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Re-weighting Methods
Sign problem avoidance strategy #2

Insert 1 in crafty ways to get positive weight factors.

〈E(N)〉 =

∫
DσPN (σ)E(σ)∫
DσPN (σ)

〈E(N − 1)〉 =

∫
DσPN−1(σ)E(σ)∫
DσPN−1

(σ)

=

∫
DσPN (σ)

PN−1(σ)
PN (σ) E(σ)∫

DσPN (σ)

∫
DσPN∫

DσPN PN−1

PN

=

〈
E
PN−1

PN

〉/〈
PN−1

PN

〉
Nakamura, Hatano, and Nishimori J. Phys. Soc. Jpn. (1992)

Ratio of expectation values, both with positive weight.
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Re-weighting Methods
Sign problem avoidance strategy #2

Real part of re-weighting factor is important and must be
distinguishable from noise.

The decay of the real part into the imaginary noise is an
indication of the re-emergence of the sign problem.

〈
PN−1

PN

〉
σ

∼ exp (−V Eτ)

Need a “goldilocks τ”: large enough to get ground state,
but small enough to delay the sign problem.
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What does the quasiparticle spectrum look like?
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Three body interactions

Large gap due to neglect of three body interactions.
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What we can say so far

m∗ ≈ mN for all simulated densities.
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Future work with AFQMC

Finish this individual study:

Three-body interactions
Off lattice momenta

Calculate NM spin susceptibility.

Neutron matter at finite temperatures

Investigate symmetric nuclear matter (i.e. add protons).

Apply to nuclei, e.g. 100Sn
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A CSGF call to arms

Some problems are simple, but not easy.

e.g., subtracting two large, similar numbers:

εpσ = E(p,N − 1)− 1

2
(E0(N) + E0(N − 2)) .

CSGFellows are well equipped to answer these problems.

Do these first before the “complicated” problems.

You might never run out of the simple, hard problems.
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Appendix A: Pairing Effects in NM

Why do we average energies for N , N − 2 in

εpσ = E(p,N − 1)− 1

2
(E0(N) + E0(N − 2)) .

From even-even isobars in nuclei:

we expect a gap between even and odd N systems.
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Appendix B: Basic Scattering Theory
At large distances assume:

ψ ∼ eikz −→ ψ ∼ eikz + f(θ)
eikr

r

scattering amplitude
yields differential cross-section

dσ

dΩ
= |f(θ)|2

For central potential f(θ) can be expanded as

f(θ) =
1

2ik

∑
`

(2`+ 1)
(
e2iδ` − 1

)
P` (cos θ)

where δ` are the phase shifts, and

σtot =
4π

k2

∑
`

(2`+ 1) sin2 δ`(k)
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Appendix B: Basic Scattering Theory
In the low momentum limit

k cot δ(k) ≈ − 1

a
+

1

2
re k

2 + . . .

scattering length
effective range
e.g. Attractive square well potential

Gandolfi, NNPSS (2016)



Appendix B: Basic Scattering Theory
In the low momentum limit

k cot δ(k) ≈ − 1

a
+

1

2
re k

2 + . . .

scattering length
effective range

e.g. Attractive square well potential

Gandolfi, NNPSS (2016)



Appendix B: Basic Scattering Theory
In the low momentum limit

k cot δ(k) ≈ − 1

a
+

1

2
re k

2 + . . .

scattering length
effective range
e.g. Attractive square well potential

Gandolfi, NNPSS (2016)



Appendix C: Low densities
Similar to cold atoms

At low densities, EOS determined by s-wave
neutron-neutron interaction.

Bertsch proposed model of low density neutron matter with
zero-range interaction tuned to infinite scattering length
(unitary limit).

E = ξEFG = ξ
3

5

~2

2m
k2
F , kF =

(
3π2n

)1/3
.

∆ = E(N + 1)− 1

2
[E(N) + E(N + 2)] = δEF = δ

~2

2m
k2
F .
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Appendix D: Monte Carlo Integration

Consider 1-D integral E =

∫ b

a
f(x) dx.

Central limit theorem tells us

EN ≡
(b− a)

N

N∑
i=1

f(xi)
N→∞−→ E.

Many ways to pick the points xi:

Uniform grid
Gaussian quadrature

}
Good for low dimensions.
Cost ∼ Nd

Simpson’s rule
Random selection by Monte Carlo methods

EN = (b− a)〈f〉 =
(b− a)

N

N∑
i=1

f(xi) +O
(

1/
√
N
)
.
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Appendix D: Importance Sampling

Many functions have weight in only a few regions

Uniform sampling is inefficient

Solution: increase density of points in regions of interest by
sampling from probability distribution p(x)

p(x) =
w(x)∫ b

a w(x) dx
,

where w(x) approximates f(x).

E =

∫ b

a
g(x)p(x) dx ≈ 1

N

N∑
i=1

g(xi),

where g(x) = f(x)/p(x).
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Appendix D: Metropolis Algorithm

Importance sampling is easy if you already know the shape
of f(x).

The Metropolis algorithm finds the shape of f(x) by
random walk.

Given two points in configuration space µ and ν, choose
transition probabilities to satisfy Boltzmann (or some
other) distribution

P (µ→ ν)

P (µ→ ν)
=
pν
pµ

= e−β(Eν−Eµ)

Break transition probability into selection and acceptance
probabilities

P (µ→ ν) = g(µ→ ν)A(µ→ ν).

Create algorithm which generates random states by
g(µ→ ν), accept those transitions with A(µ→ ν).
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Appendix E: More on χEFT

Use power counting to determine which diagrams to include

ν = −2 + 2A− 2C + 2L+
∑
i

(
di +

ni
2
− 2
)

where

A – nucleons involved in interaction,
C – separately connected pieces,
L – pion loops,
di – derivatives or mass insertions, mπ,
ni – nucleon field operators.

Adding a nucleon increments ν, so we expect
V2 � V3 � V4 � . . .
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ν = −2 + 2A− 2C + 2L+
∑
i

(
di +
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− 2
)

A = 2, C = 1, L = 0, di = 1, ni = 2

=⇒ ν = 0 (LO), (Q/Λ)0 .

A = 2, C = 1, L = 1, di = 1, ni = 2

=⇒ ν = 2, (NLO), (Q/Λ)2 .
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=⇒ ν = 2, (NLO), (Q/Λ)2 .



Appendix F: More on the quasiparticle interaction

Adding/removing only one quasiparticle, we have

δE =
∑
pσ

εpσδnpσ =⇒ εpσ =
δE

δnpσ
.

For multiple particles

δE =
∑
pσ

ε0
pσδnpσ +

1

2V

∑
p1σ1p2σ2

fp1σ1p2σ2δnp1σ1δnp1σ1

εpσ = ε0
pσ +

1

V

∑
p2σ2

fpσp2σ2δnp2σ2

=⇒ fp1σ1p2σ2 = V
δ2E

δnp1σ1δnp2σ2

= V
δεp1σ1

δnp2σ2



Appendix G: Off lattice momenta

Large errors due to difficulty of fitting the minimum of the QPE
spectrum.
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εFFG = 20. 673MeV

Solution: Add off-lattice momenta
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Appendix G: Twisted Boundary Conditions (TBC)

Instead of using periodic boundary conditions (PBC),
where

ψ(r1 + L, r2, . . . , rn) = ψ(r1, r2, . . . , rN )

Use twisted boundary conditions (TBC) where

ψ(r1 + L, r2, . . . , rn) = eiθψ(r1, r2, . . . , rN )

Corresponding momenta

pi =
2πni
L

+
θ

L

On-lattice momenta
Shift by arbitrary amount
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Appendix G: Twisted Boundary Conditions (TBC)

Shifted wavefunctions can be written

ψ(x) = ϕ(x)ei
θ
L
x, where ϕ(x) = ϕ(x+ L)

Then the single particle TDSE becomes

i~∂tψj = hψj =⇒ i~∂tϕj =
ϕ(pj + θ/L)2

2m
ϕ+ vϕj

Can keep our existing computational framework

Time evolve with adjusted kinetic energy operator

Compute observables with extra phase factor eiθ/L
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