Chaos and observability in variational data assimilation

CSGF Annual Review Dan Rey 7/25/17

Outline

- Data assimilation
 - --- blending data and models into dynamic forecasts
- Critical observability thresholds in chaotic systems
 - --- how many observations do we need?
- Three DOE applications:
 - Coupled earth systems
 - Power generation networks
 - Biophysical problems

A schematic representation of data assimilation

How many observations are needed?

- Develop analysis tools to identify critical observability thresholds
 --- below which estimates and forecasts become unreliable
- Analyze how these limits scale with properties of the problem
 --- the models, the data, and the estimation algorithm
- Validate the design of the coupled observe-analyze-forecast system
 --- and suggest improvements

Identifying the limits of computational observability

- Lorenz 1996 model
 - Atmosphere-like model on a periodic lattice
 - Chaos scales extensively with model dimension
- Simulated data
 - Uniformly distributed observations
 - Random observation errors
 - <u>No model error</u>
- Perform estimates in parallel
 - Vary resolutions of the model and observations
 - Each trial either succeeds or fails
 - Identify computational limits in observability

Observability limits of the Lorenz 1996 model

Applications to existing DOE work

- Coupled earth systems models
 - Shallow water equations require observing roughly ²/₃ of the system states
 - Time extended measurements reduce this requirement by over half
- Power systems models
 - Control short term instabilities introduced by renewable resources
 - Identify conditions leading to network-wide voltage collapse
- Biophysical applications
 - The BRAIN initiative
 - Combining data assimilation with machine learning

Acknowledgements

- Thanks to
 - My advisor and group members
 - DOE CSGF
 - NERSC
 - CCoM and CSME

