
MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Dr. Jeremy Kepner
MIT Lincoln Laboratory Fellow

July 2017

Convergence
of

Machine Learning, Big Data, and Supercomputing

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air
Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of
Defense for Research and Engineering.

© 2017 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014).
Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS
252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate
any copyrights that exist in this work.

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Dr. Jeremy Kepner
MIT Lincoln Laboratory Fellow

June 2017

The Mathematical Convergence and Architectural Divergence
of

Machine Learning, Big Data, and Supercomputing

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air
Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of
Defense for Research and Engineering.

© 2017 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014).
Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS
252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate
any copyrights that exist in this work.

Slide - 3

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Introduction

•  Big Data (Scale Out)

•  Supercomputing (Scale Up)

•  Machine Learning (Scale Deep)

•  Summary

Outline

Slide - 4

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Lincoln Laboratory Supercomputing Center (LLSC)

Air and Missile
Defense

Advanced
Technology

Homeland
Protection

Space
Control

Air Traffic
Control

ISR Systems
and Technology

Communication
Systems

Tactical Systems Mission
Areas

Cyber
Security

Engineering

LLSC develops & deploys unique, energy-efficient supercomputing that provides cross-mission
–  Data centers, hardware, software, user support, and pioneering research
–  Thousands of users
–  Interactive data analysis, simulations, and machine learning

OSINT

<html>

C2 Ground Space Cyber Maritime Air HUMINT Weather

Vast Data
Sources

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Slide - 5

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Supercomputing Center Focus Areas

•  Online education and knowledge
transfer

•  Expert content, course development,
and production platform

•  Online courses, virtualized
environments, in-person classes,
workshops, conferences, books

•  Big data architectures, databases, and
graph processing

•  Architecture analysis, benchmarking,
and advanced mathematics

•  Database infrastructure, federated
interfaces, and processing standards

•  High performance storage and
compute

•  Application programming interface
design, modeling and benchmarking

•  Supercomputing infrastructure and
scalable software environments

Big Data Technologies

GraphBLAS

A
C

D E

B

Education and Outreach

BigDAWG

Interactive Supercomputing

Mathematically rigorous approach to computational challenges

Slide - 6

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Volume
•  Challenge: Scale of data beyond what current approaches can handle

 Social media, cyber networks, internet-of-things, bioinformatics, ...

Velocity
•  Challenge: Analytics beyond what current approaches can handle

 Engineering simulation, drug discovery, autonomous systems, ...

Variety
•  Challenge: Diversity beyond what current approaches can handle

 Computer vision, language processing, decision making, ...

 Large Scale Computing: Challenges

Slide - 7

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Volume
•  Challenge: Scale of data beyond what current approaches can handle
•  Hardware: Scale-out, more servers per data center (hyperscale)

Velocity
•  Challenge: Analytics beyond what current approaches can handle
•  Hardware: Scale-up, more transistors per server (accelerators)

Variety
•  Challenge: Diversity beyond what current approaches can handle
•  Hardware: Scale-deep, more customizable processors (FPGAs, ...)

 Large Scale Computing: Hardware

Requires mathematically rigorous approaches to insulate users from scaling

architecture [14] was developed to provide significantly higher
throughput than the conventional merge sorters.

The k-way merge sorter sorts long sequences of numbers
by using a recursive “divide and conquer” approach. It divides
the sequence into k sequences that have equal, or as equal as
possible, lengths. The k shorter sequences are then sorted
independently and merged to produce the sorted result. The
sorting of k shorter sequences can also be divided into k even
shorter sequences and sorted recursively by using the same
merge sort algorithm. This process is recursively repeated until
the divided sequence length reaches 1. The sorting process
takes order nlogkn memory cycles. The k-way merge sort is
log2k times faster than the 2-way merge sort process when k is
greater than 2. For example, when k = 32, the k-way merge
sorter has five times greater sorter throughput than the 2-way
merge sorter. The main difficulty with implementing a k-way
merge sorter in a conventional processor is that it takes many
clock cycles to figure out the smallest (or largest) value among
k entries during each step of the merge sorting process. Ideally,
the smallest value of k should be computed within one
processor clock cycle for the maximum sorter throughput. The
100% efficient systolic merge sorter [9] can achieve this
performance requirement using k linear systolic array cells and
it is particularly well suited for FPGA and integrated circuit
(IC) implementation since it consists of repeated systolic cells
with nearest-neighbor-only communications.

C. 6D Toroidal Communication Network and
Randomized Message Routing

The new graph processor architecture is a parallel processor
interconnected in a 6D toroidal configuration using high
bandwidth optical links. The 6D toroid provides much higher
communication performance than lower-dimensional toroids
because of the higher bisection bandwidth.

The communication network is designed as a packet-
routing network optimized to support small packet sizes that
are as small as a single sparse matrix element. The network
scheduling and protocol are designed such that successive
communication packets from a node would have randomized
destinations in order to minimize network congestion [15].
This design is a great contrast to typical conventional
multiprocessor message-routing schemes that are based on
much larger message sizes and globally arbitrated routing that
are used in order to minimize the message-routing overhead.
However, large message-based communications are often
difficult to route and can have a relatively high message
contention rate caused by the long time periods during which
the involved communication links are tied up. The small
message sizes, along with randomized destination routing,
minimize message contentions and improve the overall
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3
network for illustration purposes) simulation based on
randomized destination communication versus unique
destination communication. Even though both routing methods
are based on small message sizes, the unique destination
routing has a message contention rate that is closer to the
contention rate of conventional routing algorithms that are

based on large message sizes. The randomized destination
routing achieved approximately six times higher data rate and
network utilization efficiency in the simulation using an
identical network.

Fig. 6. Randomized destination vs. unique destination packet
communication.

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE
MEASUREMENT

Lincoln Laboratory has developed an FPGA prototype of
the graph processor using commercial FPGA boards as shown
in Figure 7. Each board has one large FPGA and two 4-GByte
DDR3 memory banks. Two graph processor nodes are
implemented in each board. A small 4-board chassis
implements an 8-node graph processor tied together with 1D
toroidal network. Since the commercial board offered limited
scalability due to limited number of communication ports for
network connection, the larger prototypes will be developed in
the future using custom FPGA boards that can support 6D
toroidal network and up to 1 million nodes.

Fig. 7. FPGA prototype of the graph processor.

Slide - 8

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Fast Analytics Multiple Data Stores

 Standard Processing Architecture

W
eb Service Layer

Scalable Processing

Users

Operators

Analysts

Rapid Ingest
Multi-INT Data

Sources

C2 HUMINT

Weather

Space Cyber

OSINT

<html> A
C

D E

B

High Performance Requirements
•  Sustaining rapid ingest
•  Fast analytics
•  Integrating diverse data

Analysts Preferred Environments
•  Familiar
•  High Level
•  Mission Focused

Slide - 9

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Fast Analytics Multiple Data Stores

 Standard Processing Architecture: Software

W
eb Service Layer

Scalable Processing

Users

Operators

Analysts

Rapid Ingest
Multi-INT Data

Sources

C2 HUMINT

Weather

Space Cyber

OSINT

<html> A
C

D E

B

MPI

Python

Many software technologies
to choose from

Slide - 10

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Fast Analytics Multiple Data Stores

 Standard Processing Architecture: Frameworks

W
eb Service Layer

Scalable Processing

Users

Operators

Analysts

Rapid Ingest
Multi-INT Data

Sources

C2 HUMINT

Weather

Space Cyber

OSINT

<html> A
C

D E

B

Berkeley

Cloudera

HortonWorks

Big Data
Frameworks

Diverse software technologies are
organized into many frameworks

Slide - 11

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Fast Analytics Multiple Data Stores

 Standard Processing Architecture: Ecosystems

W
eb Service Layer

Scalable Processing

Users

Operators

Analysts

Rapid Ingest
Multi-INT Data

Sources

C2 HUMINT

Weather

Space Cyber

OSINT

<html> A
C

D E

B

Enterprise Cloud

Big Data Cloud Database Cloud

Compute Cloud

MIT
SuperCloud

Testbed

VMware

Hadoop SQL

MPI

Cloud Ecosystems

Diverse frameworks support
four primary cloud ecosystems

Slide - 12

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Introduction

•  Big Data (Scale Out)

•  Supercomputing (Scale Up)

•  Machine Learning (Scale Deep)

•  Summary

Outline

Slide - 13

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Example Big Data Application
- Integrating Many Stovepiped Databases -

Sensor Event Databases

Good for imagery, time series signals

Catalog Databases

Good for historic, curated data

Text Databases

Good for human generated data

Slide - 14

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Modern Database Paradigm Shifts

NoSQL

Relational Databases (SQL) 2006

NewSQL

1970

Information Retrieval P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. CODD
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external representation
are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, a normal
form for data base relations, and the concept of a universal
data sublanguage are introduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user’s model.

KEY WORDS AND PHRASES: data bank, data base, data structure, data
organization, hierarchies of data, networks of data, relations, derivability,

redundancy, consistency, composition, join, retrieval language, predicate
calculus, security, data integrity

CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29

1. Relational Model and Normal Form

1 .I. INTR~xJ~TI~N
This paper is concerned with the application of ele-

mentary relation theory to systems which provide shared
access to large banks of formatted data. Except for a paper
by Childs [l], the principal application of relations to data
systems has been to deductive question-answering systems.
Levein and Maron [2] provide numerous references to work
in this area.

In contrast, the problems treated here are those of data
independence-the independence of application programs
and terminal activities from growth in data types and
changes in data representation-and certain kinds of data
inconsistency which are expected to become troublesome
even in nondeductive systems.

Volume 13 / Number 6 / June, 1970

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3,4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only-that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consistency of relations-these are discussed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking
the derivation of connections for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”).

Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
standpoint) of competing representations of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
systems to support the relational model are not discussed.

1.2. DATA DEPENDENCIES IN PRESENT SYSTEMS
The provision of data description tables in recently de-

veloped information systems represents a major advance
toward the goal of data independence [5,6,7]. Such tables
facilitate changing certain characteristics of the data repre-
sentation stored in a data bank. However, the variety of
data representation characteristics which can be changed
without logically impairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence. In some systems these
dependencies are not clearly separable from one another.

1.2.1. Ordering Dependence. Elements of data in a
data bank may be stored in a variety of ways, some involv-
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be stored in at least one total ordering which is
closely associated with the hardware-determined ordering
of addresses. For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of presentation of records
from such a file is identical to (or is a subordering of) the

Communications of the ACM 377

Relational
Model

E.F. Codd
(1970)

1980 1990 2010

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber}@google.com

Google, Inc.

Abstract
Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
implemented, and deployed a distributed storage system
for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and thousands of machines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of
servers, and store up to several hundred terabytes of data.
In manyways, Bigtable resembles a database: it shares
many implementation strategies with databases. Paral-
lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
data out of memory or from disk.
Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client API. Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section 5 describes the
fundamentals of the Bigtable implementation, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides
measurements of Bigtable’s performance. We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string

To appear in OSDI 2006 1

G R
 A
 P
 H
 U
 L
 O

Google
BigTable

Chang et al
(2006)

Scalable SQL and NoSQL Data Stores
Rick Cattell

Originally published in 2010, last
revised December 2011

ABSTRACT
 In this paper, we examine a number of SQL and so-
called “NoSQL” data stores designed to scale simple
OLTP-style application loads over many servers.
Originally motivated by Web 2.0 applications, these
systems are designed to scale to thousands or millions
of users doing updates as well as reads, in contrast to
traditional DBMSs and data warehouses. We contrast
the new systems on their data model, consistency
mechanisms, storage mechanisms, durability
guarantees, availability, query support, and other
dimensions. These systems typically sacrifice some of
these dimensions, e.g. database-wide transaction
consistency, in order to achieve others, e.g. higher
availability and scalability.
Note: Bibliographic references for systems are not
listed, but URLs for more information can be found in
the System References table at the end of this paper.

Caveat: Statements in this paper are based on sources
and documentation that may not be reliable, and the
systems described are “moving targets,” so some
statements may be incorrect. Verify through other
sources before depending on information here.
Nevertheless, we hope this comprehensive survey is
useful! Check for future corrections on the author’s
web site cattell.net/datastores.
Disclosure: The author is on the technical advisory
board of Schooner Technologies and has a consulting
business advising on scalable databases.

1. OVERVIEW
In recent years a number of new systems have been
designed to provide good horizontal scalability for
simple read/write database operations distributed over
many servers. In contrast, traditional database
products have comparatively little or no ability to scale
horizontally on these applications. This paper
examines and compares the various new systems.
Many of the new systems are referred to as “NoSQL”
data stores. The definition of NoSQL, which stands
for “Not Only SQL” or “Not Relational”, is not
entirely agreed upon. For the purposes of this paper,
NoSQL systems generally have six key features:

1. the ability to horizontally scale “simple
operation” throughput over many servers,

2. the ability to replicate and to distribute (partition)
data over many servers,

3. a simple call level interface or protocol (in
contrast to a SQL binding),

4. a weaker concurrency model than the ACID
transactions of most relational (SQL) database
systems,

5. efficient use of distributed indexes and RAM for
data storage, and

6. the ability to dynamically add new attributes to
data records.

The systems differ in other ways, and in this paper we
contrast those differences. They range in functionality
from the simplest distributed hashing, as supported by
the popular memcached open source cache, to highly
scalable partitioned tables, as supported by Google’s
BigTable [1]. In fact, BigTable, memcached, and
Amazon’s Dynamo [2] provided a “proof of concept”
that inspired many of the data stores we describe here:
• Memcached demonstrated that in-memory indexes

can be highly scalable, distributing and replicating
objects over multiple nodes.

• Dynamo pioneered the idea of eventual
consistency as a way to achieve higher availability
and scalability: data fetched are not guaranteed to
be up-to-date, but updates are guaranteed to be
propagated to all nodes eventually.

• BigTable demonstrated that persistent record
storage could be scaled to thousands of nodes, a
feat that most of the other systems aspire to.

A key feature of NoSQL systems is “shared nothing”
horizontal scaling – replicating and partitioning data
over many servers. This allows them to support a large
number of simple read/write operations per second.
This simple operation load is traditionally called OLTP
(online transaction processing), but it is also common
in modern web applications
The NoSQL systems described here generally do not
provide ACID transactional properties: updates are
eventually propagated, but there are limited guarantees
on the consistency of reads. Some authors suggest a
“BASE” acronym in contrast to the “ACID” acronym:
• BASE = Basically Available, Soft state,

Eventually consistent
• ACID = Atomicity, Consistency, Isolation, and

Durability
The idea is that by giving up ACID constraints, one
can achieve much higher performance and scalability.

NewSQL
Cattell (2010)

SQL Era NoSQL Era NewSQL Era Future

Polystore, high
performance
ingest and
analytics

Fast analytics inside databases Common interface Rapid ingest for internet search

SQL = Structured Query Language
NoSQL = Not only SQL

Apache Prof. Stonebraker
(MIT)

NSF & MIT Prof. Stonebraker
(U.C. Berkeley)

Larry Ellison

Slide - 15

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Declarative, Mathematically Rigorous Interfaces

v ATvAT

à

alice

bob

alice

carl

bob

carl
cited

cited

SQL
Set Operations

NoSQL
Graph Operations

NewSQL
Linear Algebra

Associative Array Algebra Provides a Unified Mathematics for SQL, NoSQL, NewSQL

Operations in all representations are equivalent and are linear systems

A = NxM(k1,k2,v,⊕) (k1,k2,v) = A C = AT C = A ⊕ B C = A ⊗ C C = A B = A ⊕.⊗ B

from link to
001 alice cited bob
002 bob cited alice
003 alice cited carl

Associative Array model of SQL, NoSQL, and NewSQL Databases, Kepner et al, HPEC 2016
Mathematics of Big Data, Kepner & Jananthan, MIT Press 2017

Operation: finding Alice’s nearest neighbors

SELECT 'to' FROM T
WHERE 'from=alice'

Slide - 16

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

GraphBLAS.org Standard for Sparse Matrix Math

•  Six key operations
A = NxM(i,j,v) (i,j,v) = A C = AT C = A ⊕ B C = A ⊗ C C = A B = A ⊕.⊗ B

•  That are composable
A ⊕ B = B ⊕ A (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) A ⊗ (B ⊕ C) = (A ⊗ B) ⊕ (A ⊗ C)

A ⊗ B = B ⊗ A (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) A (B ⊕ C) = (A B) ⊕ (A C)

•  Can be used to build standard GraphBLAS functions
buildMatrix, extractTuples, Transpose, mXm, mXv, vXm, extract, assign, eWiseAdd, ...

•  Can be used to build a variety of graph utility functions
Tril(), Triu(), Degreed Filtered BFS, …

•  Can be used to build a variety of graph algorithms
Triangle Counting, K-Truss, Jaccard Coefficient, Non-Negative Matrix Factorization, …

•  That work on a wide range of graphs
Hyper, multi-directed, multi-weighted, multi-partite, multi-edge CMU SEI

PNNL

The GraphBLAS C API Specification, Buluc, Mattson, McMillan, Moreira, Yang, GraphBLAS.org 2017
GraphBLAS Mathematics, Kepner, GraphBLAS.org 2017

Slide - 17

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  GraphBLAS library for Accumulo

•  High performance graph analytics

•  50x faster than industry standard

•  Jupyter interactive portal interface
–  Similar to Mathematica notebooks

From NoSQL Accumulo to NewSQL Graphulo:, Hutchison et al, HPEC 2016
D4M 3.0: Extended Database and Language Capabilities, Milechin et al, HPEC 2017
BFS = Breadth First Search

Graphulo High Performance Database Library

0

10

20

30

40

50

60

Map Reduce Graphulo

Worst

Best

~50x
faster

M
ul

ti-
So

ur
ce

 B
FS

Ti

m
e

(S
ec

on
ds

)

Best Student Paper Award
IEEE HPEC 2016

Latency

Slide - 18

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

100 101 102 103
105

106

107

108

109

total hardware nodes

da
ta

ba
se

 in
se

rts
/s

ec
on

d

Accumulo
Cassandra
Oracle

4M/s
(MIT LL 2012)

115M/s
(MIT LL 2014)

1M/s
(Google 2014)

108M/s
(BAH 2013)

140K/s (Oracle 2013)

Graph Processing Hardware

Novel Graph Processor Architecture, Prototype System, and Results, Song, et al., HPEC 2016
Achieving 100,000,000 database inserts per second using Accumulo and D4M, Kepner et al, HPEC 2014
BAH = Booz Allen Hamilton

Lincoln GraphProcessor faster than 200+ node database cluster

200 M/s
GraphProcessor
(MIT LL 2016)

architecture [14] was developed to provide significantly higher
throughput than the conventional merge sorters.

The k-way merge sorter sorts long sequences of numbers
by using a recursive “divide and conquer” approach. It divides
the sequence into k sequences that have equal, or as equal as
possible, lengths. The k shorter sequences are then sorted
independently and merged to produce the sorted result. The
sorting of k shorter sequences can also be divided into k even
shorter sequences and sorted recursively by using the same
merge sort algorithm. This process is recursively repeated until
the divided sequence length reaches 1. The sorting process
takes order nlogkn memory cycles. The k-way merge sort is
log2k times faster than the 2-way merge sort process when k is
greater than 2. For example, when k = 32, the k-way merge
sorter has five times greater sorter throughput than the 2-way
merge sorter. The main difficulty with implementing a k-way
merge sorter in a conventional processor is that it takes many
clock cycles to figure out the smallest (or largest) value among
k entries during each step of the merge sorting process. Ideally,
the smallest value of k should be computed within one
processor clock cycle for the maximum sorter throughput. The
100% efficient systolic merge sorter [9] can achieve this
performance requirement using k linear systolic array cells and
it is particularly well suited for FPGA and integrated circuit
(IC) implementation since it consists of repeated systolic cells
with nearest-neighbor-only communications.

C. 6D Toroidal Communication Network and
Randomized Message Routing

The new graph processor architecture is a parallel processor
interconnected in a 6D toroidal configuration using high
bandwidth optical links. The 6D toroid provides much higher
communication performance than lower-dimensional toroids
because of the higher bisection bandwidth.

The communication network is designed as a packet-
routing network optimized to support small packet sizes that
are as small as a single sparse matrix element. The network
scheduling and protocol are designed such that successive
communication packets from a node would have randomized
destinations in order to minimize network congestion [15].
This design is a great contrast to typical conventional
multiprocessor message-routing schemes that are based on
much larger message sizes and globally arbitrated routing that
are used in order to minimize the message-routing overhead.
However, large message-based communications are often
difficult to route and can have a relatively high message
contention rate caused by the long time periods during which
the involved communication links are tied up. The small
message sizes, along with randomized destination routing,
minimize message contentions and improve the overall
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3
network for illustration purposes) simulation based on
randomized destination communication versus unique
destination communication. Even though both routing methods
are based on small message sizes, the unique destination
routing has a message contention rate that is closer to the
contention rate of conventional routing algorithms that are

based on large message sizes. The randomized destination
routing achieved approximately six times higher data rate and
network utilization efficiency in the simulation using an
identical network.

Fig. 6. Randomized destination vs. unique destination packet
communication.

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE
MEASUREMENT

Lincoln Laboratory has developed an FPGA prototype of
the graph processor using commercial FPGA boards as shown
in Figure 7. Each board has one large FPGA and two 4-GByte
DDR3 memory banks. Two graph processor nodes are
implemented in each board. A small 4-board chassis
implements an 8-node graph processor tied together with 1D
toroidal network. Since the commercial board offered limited
scalability due to limited number of communication ports for
network connection, the larger prototypes will be developed in
the future using custom FPGA boards that can support 6D
toroidal network and up to 1 million nodes.

Fig. 7. FPGA prototype of the graph processor.

Number of processors

 D
at

aa
ba

se

 In
se

rt
s/

se
c

Better

Worse

World Record

Slide - 19

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

DARPA HIVE and GraphChallenge.org

•  Parallel processing
•  Parallel memory access
•  Fastest (TB/s) to memory
•  Higher scalability (TB/s)
•  Optimized for Graphs

Hierarchical Identify Verify Exploit
PageRank Pipeline Benchmark: Proposal for a Holistic System Benchmark for Big-Data Platforms, Dreher et al., IPDPS GABB 2016
Static Graph Challenge: Subgraph Isomorphism, Samsi et al, HPEC 2017
Streaming Graph Challenge: Stochastic Block Partition, Kao et al, HPEC 2017

Slide - 20

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Introduction

•  Big Data (Scale Out)

•  Supercomputing (Scale Up)

•  Machine Learning (Scale Deep)

•  Summary

Outline

Slide - 21

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Example Supercomputing Applications

Nanoscale Materials Modeling

Aerodynamic Analysis

Nanophotonic Device Sim

Lumerical FDTD

Electromagnetic Simulation

Molecular Structure Viz

US3D

Aerodynamic CFD & Thermo Weather Modeling/Prediction

Kestrel

Multi-Physics Analysis Computational Fluid Dynamics Aircraft Collision Avoidance

ACAS

Slide - 22

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Example Algorithm: Finite Element Method

Mesh of engine block Corresponding stiffnes
 matrix K

Ku = f

Image source: https://www.cise.ufl.edu/research/sparse/matrices/Rothberg/gearbox.html

Finite element equation

displacements forces

•  Standard approach for many engineering problems
•  Iteratively solves large sparse matrix equations (as many small dense matrices)

Slide - 23

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Example Matrix Math Software Stacks

High performance matrix math for parallel computers and accelerators

Slide - 24

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Selected Supercomputing Processors and Systems

Aurora (2019) Summit (2017)

Processor Specs (2016)
64 Cores
128 512 bit vector units

DGX-1 | DATA SHEET | APR16

SYSTEM SPECIFICATIONS
GPUs 8x Tesla GP100
TFLOPS (GPU FP16 /
CPU FP32)

170/3

GPU Memory 16 GB per GPU
CPU Dual 20-core Intel® Xeon®

E5-2698 v4 2.2 GHz
NVIDIA CUDA® Cores 28672
System Memory 512 GB 2133 MHz DDR4 LRDIMM
Storage 4x 1.92 TB SSD RAID 0
Network Dual 10 GbE, 4 IB EDR
Software Ubuntu Server Linux OS

DGX-1 Recommended GPU
Driver

System Weight 134 lbs
System Dimensions 866 D x 444 W x 131 H (mm)
Packing Dimensions 1180 D x 730 W x 284 H (mm)
Maximum Power
Requirements

3200W

Operating Temperature
Range

10 - 35 °C

NVIDIA DGX-1
DEEP LEARNING SYSTEM

The World’s First Deep Learning Supercomputer
in a Box
Data scientists and artificial intelligence (AI) researchers require
accuracy, simplicity, and speed for deep learning success. Faster
training and iteration ultimately means faster innovation and time-
to-market.

The NVIDIA® DGX-1™ is the world’s first purpose-built system
optimized for deep learning, with fully integrated hardware and
software that can be deployed quickly and easily. Its revolutionary
performance significantly accelerates training time, making it the
world's first deep learning supercomputer in a box.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

NVIDIA DGX-1 Delivers 56X More Performance

CPU is dual socket Intel Xeon E5-2697 v3. 170 TF is half precision or FP16

NVIDIA DGX-1

Performance in teraFLOPS

CPU

170 TFLOPS

3 TFLOPS

NVIDIA DGX-1 Delivers 75X Faster Training

CPU is dual socket Intel Xeon E5-2697 v3. 170 TF is half precision or FP16.

0 10X 20X 30X 40X 60X 80X50X 70X

NVIDIA DGX-1

Relative Performance (Based on Time to Train)

CPU

2 Hours

150 Hours
(6.25 Days)

DGX-1 Node Specs (2016)

Sunway TaihuLight (2016)

Sunway Processor
260 Cores
260 256 bit vector units

National High-Performance IC Design Center

All deliver maximum performance on dense matrix math

Slide - 25

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Number of Knights Landing Compute Cores

Te
ra

flo
ps

0.01

0.1

1

10

1 2 4 8 16 32 64

Interactive Parallel Matrix Math

M
at

rix
 M

ul
tip

ly

~2 Teraflops on one
Intel Knights Landing

•  Parallel Matlab library

•  High performance dense matrix math

•  Linear speedup on Intel Knights Landing

•  Jupyter interactive portal interface
–  Similar to Mathematica notebooks

Benchmarking Data Analysis and Machine Learning Applications on the Intel KNL Many-Core Processor, Byun et al., HPEC 2017

Slide - 26

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Manycore system sustains Lincoln’s leadership
position in interactive supercomputing

–  Compatible with all existing LLSC software
–  Provides processing (6x) and bandwidth (20x) for

physical simulation and machine learning applications

TX-Green Upgrade
Processor Intel Knights Landing

Total Cores 41,472

Peak Petaflops 1.724

Top500 Petaflops 1.025 (measured)

Total Terabytes 124

Network Link Intel OmniPath 25 GB/s

Based on Nov 2016
Top500.org list

#1 at Lincoln
#1 at MIT
#1 in Massachusetts
#1 in New England
#2 in the Northeast
#3 at a US University
#3 at a University in the
 Western Hemisphere
#43 in the United States
#106 in the World

Only zero
carbon

emission
system

in Top500

Lincoln Laboratory Petascale System

Slide - 27

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Parallel simulations produce enormous amounts of data
•  Parallel file systems designed to meet these requirements

Supercomputing I/O

were used in a manner generally representative of a typical
user workload for copying data. Processes in the single-client
node tests were launched with 100ms of delay between each
startup, and, in the large-scale test, the entire run was initiated
concurrently.

Results for the single-client-node run are depicted in Fig-
ure 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Worker Processes - Single Client Node

0

5

10

15

20

25

30

A
v
e
ra

g
e
 D

a
ta

 C
o

p
y
 R

a
te

 (
G

b
/s

)

Lustre Infiniband Write
Lustre Infiniband Read
Lustre Ethernet Write
Lustre Ethernet Read
Amazon S3 Write
Amazon S3 Read

Fig. 3: Lustre file system on Infiniband/10 Gigabit Ethernet,
and Amazon S3 on 10 Gigabit Ethernet Performance as a
function of data transfer rate achieved per number of worker
processes dispatched.

On our 10 Gigabit Ethernet-based Lustre system, wire-speed
read and write performance was achieved with as few as 2 cp
worker processes, and a single process was able to achieve
70-80% of peak. Lustre over Infiniband exhibited a similar
performance curve, albeit with a higher potential line rate
that is due to the increased potential speed of the Infiniband
interface.

While data transfer to and from Amazon S3 was able to
reach the same performance levels as the Lustre file system
on our single 10 Gigabit Ethernet test node, it required 12 or
13 separate worker processes to realize peak performance. A
single instance of the AWS copy command (aws s3 cp), with
no modifications to the Python source, is able to achieve a
transfer rate in either direction of approximately 130 MB/s on
our test system before consuming 100% of the single CPU it’s
running on.

Using system-level profiling on the running Python process
handling the data transfer revealed that data were being read
from and written to both the local disk and the network in
8 KB chunks. This buffer size is much too small to achieve
peak performance on anything beyond a very low-bandwidth
network. Further examination reveals that these block and
socket buffer size values appear to be hard-coded within the
system Python libraries themselves; an example is the the
HTTPConnection.send method in the system Python httplib
library, which has a socket buffer size of 8192 explicitly
defined as a constant [24]. Given the extreme level of CPU-
boundedness displayed by these tools when running at high
network rates, it’s possible that the Python interpreter itself is
also contributing to the high levels of resource utilization, as
much of the HTTP protocol and network code in httplib is

written in pure Python and not bound to a library written in
a language such a C or C++.

1 2 4 8 16 32 64 96 128

Cluster Nodes

0

50

100

150

200

250

300

350

400

A
v
e
ra

g
e
 D

a
ta

 C
o

p
y
 R

a
te

 (
G

b
/s

)

Lustre Read Speed
Lustre Write Speed

Fig. 4: Lustre file system performance scaling on TX-Green
Supercomputer using multiple concurrently active 10 Gigabit
Ethernet client nodes.

In the multi-client benchmark results displayed in Figure 4,
we demonstrate that the Lustre file system, on modern storage
hardware and with a well-designed network architecture, ob-
tains near-linear performance improvement by increasing the
number of connected clients retrieving data from or pushing
data to the central storage array until the underlying physical
limitations of the network and storage hardware are met. While
the results shown in the graph above represent the average
start-to-finish transfer rate of each complete test, a sustained
peak throughput of 480 Gb/s in the read test and 350 Gb/s
in the write test was routinely achieved on the SuperCloud
hardware during the 128-node cluster run.

V. SUMMARY AND FUTURE WORK

The rise of machine learning and graph analytic systems
has created a need for diverse high performance storage and
ways to measure and compare the capabilities of these storage
systems. The Lustre file system and Amazon’s Simple Storage
Service are both designed to address the largest and most
challenging data storage problems. Relatively few comparative
measurements exist to inform decisions about which storage
systems are best suited for particular tasks. This paper provides
a baseline assessment of the performance and capabilities that
can be expected when choosing a storage solution.

The performance tests that we used span the gamut of
parallel I/O scenarios ranging from single-client, single-node
Amazon S3 and Lustre performance to a large-scale multi-
client test designed to demonstrate the capabilities of a modern
storage appliance under heavy load. These results show that
when parallel I/O is used correctly (i.e., many simultaneous
read or write processes), full network bandwidth performance
is achievable and ranged from 10 gigabits/s over a 10 GigE S3
connection to 0.35 terabits/s using Lustre on a 1200-port 10
GigE switch. These results demonstrate that S3 is well-suited
to sharing vast quantities of data over the Internet, while Lustre
is well-suited to processing large quantities of data locally.

We have established that one can achieve a very similar
baseline-level performance when sequentially reading and

were used in a manner generally representative of a typical
user workload for copying data. Processes in the single-client
node tests were launched with 100ms of delay between each
startup, and, in the large-scale test, the entire run was initiated
concurrently.

Results for the single-client-node run are depicted in Fig-
ure 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Worker Processes - Single Client Node

0

5

10

15

20

25

30

A
v
e
ra

g
e
 D

a
ta

 C
o

p
y
 R

a
te

 (
G

b
/s

)

Lustre Infiniband Write
Lustre Infiniband Read
Lustre Ethernet Write
Lustre Ethernet Read
Amazon S3 Write
Amazon S3 Read

Fig. 3: Lustre file system on Infiniband/10 Gigabit Ethernet,
and Amazon S3 on 10 Gigabit Ethernet Performance as a
function of data transfer rate achieved per number of worker
processes dispatched.

On our 10 Gigabit Ethernet-based Lustre system, wire-speed
read and write performance was achieved with as few as 2 cp
worker processes, and a single process was able to achieve
70-80% of peak. Lustre over Infiniband exhibited a similar
performance curve, albeit with a higher potential line rate
that is due to the increased potential speed of the Infiniband
interface.

While data transfer to and from Amazon S3 was able to
reach the same performance levels as the Lustre file system
on our single 10 Gigabit Ethernet test node, it required 12 or
13 separate worker processes to realize peak performance. A
single instance of the AWS copy command (aws s3 cp), with
no modifications to the Python source, is able to achieve a
transfer rate in either direction of approximately 130 MB/s on
our test system before consuming 100% of the single CPU it’s
running on.

Using system-level profiling on the running Python process
handling the data transfer revealed that data were being read
from and written to both the local disk and the network in
8 KB chunks. This buffer size is much too small to achieve
peak performance on anything beyond a very low-bandwidth
network. Further examination reveals that these block and
socket buffer size values appear to be hard-coded within the
system Python libraries themselves; an example is the the
HTTPConnection.send method in the system Python httplib
library, which has a socket buffer size of 8192 explicitly
defined as a constant [24]. Given the extreme level of CPU-
boundedness displayed by these tools when running at high
network rates, it’s possible that the Python interpreter itself is
also contributing to the high levels of resource utilization, as
much of the HTTP protocol and network code in httplib is

written in pure Python and not bound to a library written in
a language such a C or C++.

1 2 4 8 16 32 64 96 128

Cluster Nodes

0

50

100

150

200

250

300

350

400

A
v

e
ra

g
e

 D
a

ta
 C

o
p

y
 R

a
te

 (
G

b
/s

)

Lustre Read Speed
Lustre Write Speed

Fig. 4: Lustre file system performance scaling on TX-Green
Supercomputer using multiple concurrently active 10 Gigabit
Ethernet client nodes.

In the multi-client benchmark results displayed in Figure 4,
we demonstrate that the Lustre file system, on modern storage
hardware and with a well-designed network architecture, ob-
tains near-linear performance improvement by increasing the
number of connected clients retrieving data from or pushing
data to the central storage array until the underlying physical
limitations of the network and storage hardware are met. While
the results shown in the graph above represent the average
start-to-finish transfer rate of each complete test, a sustained
peak throughput of 480 Gb/s in the read test and 350 Gb/s
in the write test was routinely achieved on the SuperCloud
hardware during the 128-node cluster run.

V. SUMMARY AND FUTURE WORK

The rise of machine learning and graph analytic systems
has created a need for diverse high performance storage and
ways to measure and compare the capabilities of these storage
systems. The Lustre file system and Amazon’s Simple Storage
Service are both designed to address the largest and most
challenging data storage problems. Relatively few comparative
measurements exist to inform decisions about which storage
systems are best suited for particular tasks. This paper provides
a baseline assessment of the performance and capabilities that
can be expected when choosing a storage solution.

The performance tests that we used span the gamut of
parallel I/O scenarios ranging from single-client, single-node
Amazon S3 and Lustre performance to a large-scale multi-
client test designed to demonstrate the capabilities of a modern
storage appliance under heavy load. These results show that
when parallel I/O is used correctly (i.e., many simultaneous
read or write processes), full network bandwidth performance
is achievable and ranged from 10 gigabits/s over a 10 GigE S3
connection to 0.35 terabits/s using Lustre on a 1200-port 10
GigE switch. These results demonstrate that S3 is well-suited
to sharing vast quantities of data over the Internet, while Lustre
is well-suited to processing large quantities of data locally.

We have established that one can achieve a very similar
baseline-level performance when sequentially reading and

Performance Measurements of Supercomputing and Cloud Storage Solutions, Jones et al, HPEC 2017
*Over 10 GigE Connection to Amazon

*

Slide - 28

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Introduction

•  Big Data (Scale Out)

•  Supercomputing (Scale Up)

•  Machine Learning (Scale Deep)

•  Summary

Outline

Slide - 29

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

86 1955 WESTERN JOINT COMPUTER CONFERENCE

Generalization of Pattern Recognition in a
Self-Organizing System*

W. A. CLARKf AND B. G. FARLEYf

Summary—A self-organizing system reported upon earlier is
briefly described. Two further experiments to determine its proper-
ties have been carried out. The first demonstrates that self-organiza-
tion still takes place even if the input patterns are subjected to con-
siderable random variation. The second experiment indicates that,
after organization with the usual fixed patterns, the system classifies
other input patterns statistically according to a simple preponderance
criterion. Significance of this result as a generalization in pattern
recognition is discussed. Some remarks are made on methods of
simulation of such systems and their relation to computer design.

D E S C R I P T I O N O F S E L F - O R G A N I Z I N G S Y S T E M

IN A P R E V I O U S paper 1 the au thors described a sys-
t em which organized itself from an initially r andom
condit ion to a s t a t e in which discr iminat ion of two

different i npu t p a t t e r n s 2 was accomplished. T h e be-
hav ior of t he sys tem was s imulated b y means of a
digi tal compu te r—th e M e m o r y T e s t C o m p u t e r of
Lincoln Labora to ry .

Briefly, the self-organizing system was composed of
two pa r t s . T h e first p a r t received i npu t p a t t e r n s and
t ransformed t h e m into ou tpu t s , and the second p a r t
ac ted upon pa rame te r s of t he first so as to modify the
i n p u t - o u t p u t t ransformat ion according to cer tain fixed
cri teria. These p a r t s were te rmed the t ransformat ion
and the modifier, respectively.

T h e t ransformat ion is a r andomly in terconnected
ne twork of nonlinear e lements , each e lement having a
definite threshold for incoming excitat ion, below which
no act ion occurs, and above which the e lement "fires."
W h e n an e lement fires, i ts threshold immedia te ly rises
effectively to infinity (it canno t be fired), and then , after
a shor t fixed delay, falls exponent ial ly back toward i ts
quiescent value. Fu r the rmore , a t some shor t t ime after
firing, an e lement t r ansmi t s exci tat ion to all o ther eler
m e n t s to which i t is connected. T h e effectiveness of the
exci ta t ion t h u s t r an smi t t e d to a succeeding e lement is
de te rmined b y a p rope r ty of the par t icu lar connection
known as i ts "weight ." In general, there will be several
incoming connect ions a t a n y element , each hav ing i ts
individual weight as shown in Fig. 1. A t t he ins tan t of
t ransmission (which is the t ime of impulse arr ival a t the
succeeding e lement) , the appropr ia te weight is added to
a n y exci ta t ion a l ready present a t the succeeding cell.

* The research reported in this document was supported jointly
by the Army, the Navy, and the Air Force under contract with the
Massachusetts Institute of Technology.

f Lincoln Laboratory, Massachusetts Institute of Technology,
Lexington, Mass. 1 B. G. Farley and W. A. Clark, "Simulation of self-organizing
systems by digital computer," Trans. IRE, vol. PGIT-4, pp. 76-84;
September, 1954.

2 In this paper, the word "pattern" is synonymous with "con-
figuration."

Thereaf ter the excitat ion decays exponent ia l ly to zero.
If a t a n y t ime this exci tat ion exceeds t he threshold of
the succeeding element, the e lement performs its firing
cycle and t r ansmi t s i ts own exci tat ions .

Fig. 1—Typical network elements i and j showing
connection weights w.

A ne twork such as the one described is suggestive of
ne tworks of the nerve cells, or neurons , of physiology,
b u t since t h e detai ls of neuron in terac t ion are a s ye t un-
certain, i t canno t even be said t h a t the ne tworks are
identical wi thou t some simplifications which are present .

In the work ment ioned, the ne twork was ac t iva ted
and a n o u t p u t obta ined in the following way . T h e net
was divided arb i t rar i ly into two groups, designated as
i npu t and o u t p u t groups. T h e o u t p u t g roup was further
subdivided in two, and an o u t p u t was defined a t a n y
i n s t an t b y the difference in the n u m b e r of e lements fired
in t he two subgroups dur ing the ins tan t . Th i s a r range-
m e n t migh t be te rmed a push-pull o u t p u t .

T h e i npu t g roup was also subdivided in to two sub-
groups, and two fixed inpu t p a t t e r n s were provided,
usual ly designated as px and p2. I n p u t pi consisted in
add ing a large excitat ion into all the i npu t e lements of
one subgroup s imul taneously and repet i t ively a t a con-
s t a n t period, b u t doing nothing to t he o the r subgroup.
I n p u t p2 was jus t the reverse. In th is w a y o u t p u t ac-
t iv i ty character is t ic of the inpu t p a t t e r n was obta ined.

I t was now desired to provide a modifier ac t ing upon
pa rame te r s of the ne t so as to gradual ly reorganize it to
ob ta in o u t p u t ac t iv i ty of a previously specified charac-
terist ic, namely , t h a t pa t t e rn s pi and pi would a lways
dr ive the o u t p u t in previously specified direct ions. In
our exper iments , pi was made to dr ive t he o u t p u t in a
negat ive direction, t h a t is to say, pi causes more firing
to t a k e place on the average in t he first o u t p u t subgroup
t h a n in the second. In the case of p%, t he s i tuat ion was
exact ly reversed.

T h i s desired organizat ion of the net was accomplished
b y means of va ry ing the weights ment ioned above in the
following way . Examina t ion is m a d e of the change in
o u t p u t a t every ins tan t . If a change in a favorable direc-
t ion occurs (e.g. negat ive change in case pi is t he inpu t

Self ridge: Pattern Recognition and Modern Computers 91

lated by the program. In the event that the simulation
experiment makes extensive use of such randomness it
would be desirable to incorporate a source of uniformly-
distributed random numbers as one of the electronic
elements of the computer. Such an element would, of
course, also be of great value in statistical work and
monte-carlo calculations in general.

Finally, it is worth mentioning that simulation experi-
ments involving partially random program behavior,
unlike arithmetic computations, generally require the

INTRODUCTION

WE CONSIDER the process we call Pattern
Recognition. By this we mean the extraction of
the significant features of data from a back-

ground of irrelevant detail. What we are interested in is
simulating this process on digital computers. We give
examples on three levels of complexity corresponding
to the subjects of the other three speakers here today.
We examine in detail the problem on the second level,
visual recognition of simple shapes.

Finally, we show how our attack on that problem can
be extended so that the computer is essentially perform-
ing a learning process and constructing new concepts on
the basis of its experience.

PATTERN RECOGNITION

By pattern recognition we mean the extraction of
the significant features from a background of irrelevant
detail. We are interested in simulating this on digital
computers for several reasons. First, it is the kind of
thing that brains seem to do very well. Secondly, it is
the kind of thing that computing machines do not do
very well yet. Thirdly, it is a productive problem—it
leads naturally to studying other processes, such as
learning. And, finally, it has many fascinating applica-
tions on its own.

We shall not review here the valuable work that has
been done and is being done elsewhere.

EXAMPLES OF PATTERN RECOGNITION

Consider Fig. 1. The horizontal lines on the left differ
from those on the right in having vertical spikes mostly
at the left end. That is, here there are two patterns:

* The work in this paper was sponsored jointly by the U. S. Army,
U. S. Navy, and U. S. Air Force under contract with M.I.T.

t Lincoln Laboratory, Massachusetts Institute of Technology,
Lexington, Mass.

presence of the experimenter at the computer, a t least
during the program checkout phase and subsequently
whenever large changes in operating parameters are
made. For this reason any features which assist the ex-
perimenter in evaluating the operation of various parts
of the program "on the spot" are of great value. In this
category one might include programmed cathode-ray
tube displays, audio output, and the ability to print out
selected memory registers without stopping the com-
puter.

those with a preponderance at the left end and those
with a preponderance at the right end. The notion of
simple preponderance or elemental discrimination is
clearly one of the most primitive sources of patterns.

iiij L , . llhi.l

JL LLL

I lilll , L l l i
Fig. 1

Here we have filtered each line from perhaps 100 bits
down to just one. I t is this filtering that is pattern
recognition.

Our next example is the visual recognition of simple
shapes. This is a two-dimensional problem, of course,
while the previous one was merely one-dimensional.
Both the shapes in Fig. 2 are clearly squares though (1)
they are in different places, (2) they have different sizes,
(3) one is hollow, the other not, and (4) they have dif-
ferent orientations.

Fig. 2

Our final example, like our first, divides all the con-
figurations of data into two classes. From every chess

Pattern Recognition and Modern Computers
0. G. SELFRIDGEt Neural

Networks

Language

106 1955 WESTERN JOINT COMPUTER CONFERENCE

only one move deep, it is fundamentally grounded in the
tactics, which extend much further into the future.

The decision is now made whether to make the avail-
able set suffice, or whether to return and work some
more: to add and modify the goals and tactics. This is a
level-of-aspiration type of decision, which will depend
not only on whether the alternatives are "good enough,"
but also on how much time remains, and whether the
move is crucial. Only if the decision is made not to ex-
plore and expand further, is the best alternative picked
from the limited set and punched into the card as the
machine's actual move.

The term "best alternative," is used in a very casual
way. The evaluations consist of many numbers, at least
one for each goal. It is clear that if a single alternative
dominates all others, it should be chosen. It is also fairly
clear that an alternative which achieves a very im-
portant subgoal is to be preferred over one which only
increases the likelihood of a few very subordinate ones.
But basically this is a multiple value situation, and in
general no such simple rules can be expected to indicate
a single best action. The problem for the machine is not
to somehow obtain a magic formula to solve the unsolv-
able but to make a reasonable choice with least effort
and proceed with more productive work. There are
other ways to deal with the problem; for instance, in-
clude conflict as a fundamental consideration in the
decision to explore further.

Thus, at each move the machine can be expected to
iterate several times until it achieves an alternative that
it likes, or until it runs out of time and thus loses the
game by not being smart enough or lucky enough.

PERFORMANCE SCHEMA

The pieces now exist to give an over-all schema for
the performance system of the chess learning machine.
This is a set of mechanisms which is sufficient to enable
the machine to play chess. There is no learning in this
system; it will play no better next time because it played
this time. If the content of all the expressions required is
appropriate, it will play good chess; if they are not, it
will play very poor chess.

This performance system is highly adaptive. A goal
structure peculiar to each play of the game is generated
during the course of play. Tactics reflect the minute de-
tail of the current situation. This short-run adaptability
is not to be confused with learning which would perma-
nently affect the way the machine would play in the
future.

Fig. 1 gives the schema of operation. Rather than
present as systematic and complete a representation as
possible, attention has been given to relating the ele-
ments discussed so far. The rectangles represent the
major kinds of information in the system. These may be
viewed as memories. The arrows indicate processes that
operate on one kind of information to produce another.
The small writing by these arrows relates these processes

to key words used earlier. Some of the main decisions
are put in circles, since it makes the diagram easier to
follow. The programs for carrying out most of these
processes are the various nets, like the classification net.
For the sake of clarity, these are not shown as explicit
kinds of information, although they certainly occupy a
large part of the computer's memory.

input

OPPONENTS
MOVE

classify OPPONENTS
GOALS

t eliminate
1 useless branches ikelihooab

CURRENT
TACTICS

tactic
se^rc h

.r select action from ea,ch

AVAILABLE
ALTERNATIVES

get new s tep by s tep
position i computation

EVALUATION
FOR. EACH ALT

transformation
rules

v*>c i choose"bes t ' Y " " edtern&tive

MACHINES
MOVE

t out put
Fig. 1—Schematic flow diagram for performance system.

Each sequence always starts with an opponent's
move being received (at the top). The process continues
(downward) by a series of straightforward computa-
tions until the question is reached whether the situation
is "good enough." This is the fundamental question. If
the answer is yes, the machine has only to choose from
among the available alternatives and play, thus ending
the sequence (down). So far the effort spent is nominal.
If, however, the answer is no, the machine proceeds to
the modification and extension of the goals and tactics
(to the right and up). This part is of indeterminate dur-
ation and effort and utilizes all of the complex apparatus
that has been built up. Following this, the machine
again attempts to produce a move (downward again).
This is the fundamental cycle: to try to decide on a

Strategy

96 1955 WESTERN JOINT COMPUTER CONFERENCE

Fig. 10—A4, after averaging with threshold 13.
Fig. 6—A3, after averaging with threshold 5.

For a low threshold, such as 5 for a 5 X5 window, the
image will be thickened. As the threshold is raised a
thinning takes place. This is evident in Figs. 7 through
11. I t is particularly significant that for a threshold of
15, the corner point and two junction points are iso-
lated. The same phenomenon is shown in Figs. 12
through 17. The thick A of Fig. 18 has a blank strip and
one small hole. For the low thresholds these irregulari-
ties are removed and for the high thresholds they are
emphasized, as shown in Figs. 18 through 25.

Fig. 11—A4, after averaging with thresholdJ15.

Fig. 7—A4, input image. Fig. 12—A5, input image.

Fig. 8—A4, after averaging with threshold 5. Fig. 13—A5, after averaging with threshold 5.

Fig. 9—A4, after averaging with threshold 10. Fig. 14—A5, after averaging with threshold 10.

Vision

Slide - 30

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Increased abstraction at deeper layers
yi+1 = h(Wi yi + bi)

 requires a non-linear function, such as
h(y) = max(y,0)

•  Matrix multiply Wi yi dominates compute

 Remark: can rewrite using GraphBLAS as
yi+1 = Wi yi ⊗ bi ⊕ 0

 where ⊕ = max() and ⊗ = +

 DNN oscillates over two linear semirings
S1 = (, + ,x, 0,1)
S2 = ({-∞ ∪ },max,+,-∞,0)

Deep Neural Networks (DNNs) for Machine Learning

Input
Features

Output
Classification

Edges
Object Parts

Objects

y0 W0
b0

W1
b1

W2
b2

W3
b3

y2 y3

y4

y1

Enabling Massive Deep Neural Networks with the GraphBLAS
Kepner, Kumar,́ Moreira, Pattnaik, Serrano, Tufo, HPEC 2017

Slide - 31

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Lots of machine learning software
•  Designed for diverse data
•  Jupyter interactive portal interface

–  Similar to Mathematica notebooks

Example Machine Learning Software

Slide - 32

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Intel Knights Landing adds enhanced vector processing to a
general purpose processor

•  Nvidia DGX-1 integrates 8 video game processors
•  Intel Arria adds FPGA support for customized logic
•  Google TPU is a custom processor for dense neural networks
•  Lincoln Laboratory GraphProcessor is a custom chassis for

sparse matrix mathematics

Example Machine Learning Hardware

DGX-1 | DATA SHEET | APR16

SYSTEM SPECIFICATIONS
GPUs 8x Tesla GP100
TFLOPS (GPU FP16 /
CPU FP32)

170/3

GPU Memory 16 GB per GPU
CPU Dual 20-core Intel® Xeon®

E5-2698 v4 2.2 GHz
NVIDIA CUDA® Cores 28672
System Memory 512 GB 2133 MHz DDR4 LRDIMM
Storage 4x 1.92 TB SSD RAID 0
Network Dual 10 GbE, 4 IB EDR
Software Ubuntu Server Linux OS

DGX-1 Recommended GPU
Driver

System Weight 134 lbs
System Dimensions 866 D x 444 W x 131 H (mm)
Packing Dimensions 1180 D x 730 W x 284 H (mm)
Maximum Power
Requirements

3200W

Operating Temperature
Range

10 - 35 °C

NVIDIA DGX-1
DEEP LEARNING SYSTEM

The World’s First Deep Learning Supercomputer
in a Box
Data scientists and artificial intelligence (AI) researchers require
accuracy, simplicity, and speed for deep learning success. Faster
training and iteration ultimately means faster innovation and time-
to-market.

The NVIDIA® DGX-1™ is the world’s first purpose-built system
optimized for deep learning, with fully integrated hardware and
software that can be deployed quickly and easily. Its revolutionary
performance significantly accelerates training time, making it the
world's first deep learning supercomputer in a box.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

NVIDIA DGX-1 Delivers 56X More Performance

CPU is dual socket Intel Xeon E5-2697 v3. 170 TF is half precision or FP16

NVIDIA DGX-1

Performance in teraFLOPS

CPU

170 TFLOPS

3 TFLOPS

NVIDIA DGX-1 Delivers 75X Faster Training

CPU is dual socket Intel Xeon E5-2697 v3. 170 TF is half precision or FP16.

0 10X 20X 30X 40X 60X 80X50X 70X

NVIDIA DGX-1

Relative Performance (Based on Time to Train)

CPU

2 Hours

150 Hours
(6.25 Days)

architecture [14] was developed to provide significantly higher
throughput than the conventional merge sorters.

The k-way merge sorter sorts long sequences of numbers
by using a recursive “divide and conquer” approach. It divides
the sequence into k sequences that have equal, or as equal as
possible, lengths. The k shorter sequences are then sorted
independently and merged to produce the sorted result. The
sorting of k shorter sequences can also be divided into k even
shorter sequences and sorted recursively by using the same
merge sort algorithm. This process is recursively repeated until
the divided sequence length reaches 1. The sorting process
takes order nlogkn memory cycles. The k-way merge sort is
log2k times faster than the 2-way merge sort process when k is
greater than 2. For example, when k = 32, the k-way merge
sorter has five times greater sorter throughput than the 2-way
merge sorter. The main difficulty with implementing a k-way
merge sorter in a conventional processor is that it takes many
clock cycles to figure out the smallest (or largest) value among
k entries during each step of the merge sorting process. Ideally,
the smallest value of k should be computed within one
processor clock cycle for the maximum sorter throughput. The
100% efficient systolic merge sorter [9] can achieve this
performance requirement using k linear systolic array cells and
it is particularly well suited for FPGA and integrated circuit
(IC) implementation since it consists of repeated systolic cells
with nearest-neighbor-only communications.

C. 6D Toroidal Communication Network and
Randomized Message Routing

The new graph processor architecture is a parallel processor
interconnected in a 6D toroidal configuration using high
bandwidth optical links. The 6D toroid provides much higher
communication performance than lower-dimensional toroids
because of the higher bisection bandwidth.

The communication network is designed as a packet-
routing network optimized to support small packet sizes that
are as small as a single sparse matrix element. The network
scheduling and protocol are designed such that successive
communication packets from a node would have randomized
destinations in order to minimize network congestion [15].
This design is a great contrast to typical conventional
multiprocessor message-routing schemes that are based on
much larger message sizes and globally arbitrated routing that
are used in order to minimize the message-routing overhead.
However, large message-based communications are often
difficult to route and can have a relatively high message
contention rate caused by the long time periods during which
the involved communication links are tied up. The small
message sizes, along with randomized destination routing,
minimize message contentions and improve the overall
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3
network for illustration purposes) simulation based on
randomized destination communication versus unique
destination communication. Even though both routing methods
are based on small message sizes, the unique destination
routing has a message contention rate that is closer to the
contention rate of conventional routing algorithms that are

based on large message sizes. The randomized destination
routing achieved approximately six times higher data rate and
network utilization efficiency in the simulation using an
identical network.

Fig. 6. Randomized destination vs. unique destination packet
communication.

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE
MEASUREMENT

Lincoln Laboratory has developed an FPGA prototype of
the graph processor using commercial FPGA boards as shown
in Figure 7. Each board has one large FPGA and two 4-GByte
DDR3 memory banks. Two graph processor nodes are
implemented in each board. A small 4-board chassis
implements an 8-node graph processor tied together with 1D
toroidal network. Since the commercial board offered limited
scalability due to limited number of communication ports for
network connection, the larger prototypes will be developed in
the future using custom FPGA boards that can support 6D
toroidal network and up to 1 million nodes.

Fig. 7. FPGA prototype of the graph processor.

TPU

Graph
Processor

more general
more

custom

Slide - 33

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Caffe is a widely used machine learning
package developed at UC Berkeley

•  Intel Knights Landing processor delivers
5.4x more performance per rack over
standard Intel Xeon processor

Performance: Caffe Deep Learning Framework

0

1

2

3

6

5.
4x

 fa
st

er

Faster

Slower

4

5 Caffe
Image Test

Relative
Performance

Per Rack

Intel
Xeon

Intel
Knights Landing Figure 3: Features extracted from a deep network,

visualized in a 2-dimensional space. Note the clear
separation between categories, indicative of a suc-
cessful embedding.

Learning Semantic Features In addition to end-to-end
training, Ca↵e can also be used to extract semantic features
from images using a pre-trained network. These features
can be used “downstream” in other vision tasks with great
success [2]. Figure 3 shows a two-dimensional embedding
of all the ImageNet validation images, colored by a coarse
category that they come from. The nice separation testifies
to a successful semantic embedding.
Intriguingly, this learned feature is useful for a lot more

than object categories. For example, Karayev et al. have
shown promising results finding images of di↵erent styles
such as “Vintage” and “Romantic” using Ca↵e features (Fig-
ure 4) [6].

Ethereal HDR Melancholy Minimal

Figure 4: Top three most-confident positive pre-
dictions on the Flickr Style dataset, using a Ca↵e-
trained classifier.

Object Detection Most notably, Ca↵e has enabled us
to obtain by far the best performance on object detection,
evaluated on the hardest academic datasets: the PASCAL
VOC 2007-2012 and the ImageNet 2013 Detection challenge
[3].
Girshick et al. [3] have combined Ca↵e together with tech-

niques such as Selective Search [10] to e↵ectively perform
simultaneous localization and recognition in natural images.
Figure 5 shows a sketch of their approach.
Beginners’ Guides To help users get started with in-

stalling, using, and modifying Ca↵e, we have provided in-
structions and tutorials on the Ca↵e webpage. The tuto-
rials range from small demos (MNIST digit recognition) to
serious deployments (end-to-end learning on ImageNet).
Although these tutorials serve as e↵ective documentation

of the functionality of Ca↵e, the Ca↵e source code addition-
ally provides detailed inline documentation on all modules.

1. Input
image

aeroplane? no.

...
person? yes.

tvmonitor? no.

...

DNN

Figure 5: The R-CNN pipeline that uses Ca↵e for
object detection.

This documentation will be exposed in a standalone web
interface in the near future.

5. AVAILABILITY
Source code is published BSD-licensed on GitHub.5 Project

details, step-wise tutorials, and pre-trained models are on
the homepage.6 Development is done in Linux and OS X,
and users have reported Windows builds. A public Ca↵e
Amazon EC2 instance is coming soon.

6. ACKNOWLEDGEMENTS
We would like to thank NVIDIA for GPU donation, the

BVLC sponsors (http://bvlc.eecs.berkeley.edu/), and
our open source community.

7. REFERENCES
[1] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A

MATLAB-like environment for machine learning. In
BigLearn, NIPS Workshop, 2011.

[2] J. Donahue, Y. Jia, O. Vinyals, J. Ho↵man, N. Zhang,
E. Tzeng, and T. Darrell. Decaf: A deep convolutional
activation feature for generic visual recognition. In ICML,
2014.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and
semantic segmentation. In CVPR, 2014.

[4] I. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin,
M. Mirza, R. Pascanu, J. Bergstra, F. Bastien, and
Y. Bengio. Pylearn2: a machine learning research library.
arXiv preprint 1308.4214, 2013.

[5] S. Guadarrama, E. Rodner, K. Saenko, N. Zhang,
R. Farrell, J. Donahue, and T. Darrell. Open-vocabulary
object retrieval. In RSS, 2014.

[6] S. Karayev, M. Trentacoste, H. Han, A. Agarwala,
T. Darrell, A. Hertzmann, and H. Winnemoeller.
Recognizing image style. arXiv preprint 1311.3715, 2013.

[7] A. Krizhevsky. cuda-convnet.
https://code.google.com/p/cuda-convnet/, 2012.

[8] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet
classification with deep convolutional neural networks. In
NIPS, 2012.

[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition,
localization and detection using convolutional networks. In
ICLR, 2014.

[10] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders.
Selective search for object recognition. IJCV, 2013.

[11] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and
L. Bourdev. Panda: Pose aligned networks for deep
attribute modeling. In CVPR, 2014.

5
https://github.com/BVLC/caffe/

6
http://caffe.berkeleyvision.org/

Caffe: Convolutional architecture for fast feature embedding, Yangqing et al, ACM international conference on Multimedia, 2014
Benchmarking Data Analysis and Machine Learning Applications on the Intel KNL Many-Core Processor, Byun et al., HPEC 2017

Slide - 34

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Large neural networks drive
machine learning performance
–  100,000s features
–  10s of layers
–  100,000s of categories

•  Larger networks need memory
–  Requires sparse implementation

•  Natural fit for GraphBLAS

Next Generation: Sparse Neural Networks

Enabling Massive Deep Neural Networks with the GraphBLAS
Kepner, Kumar,́ Moreira, Pattnaik, Serrano, Tufo, HPEC 2017

1 # i n c l u d e ”GraphBLAS . h ”
2
3 GrB Info dnn (GrB Matrix ⇤Y, GrB Matrix ⇤W, GrB Matrix ⇤B , GrB Index L)
4 /⇤
5 ⇤ L � Number o f l a y e r s
6 ⇤ W[0 : L�1] � Array o f m x m w e i g h t m a t r i c e s
7 ⇤ B [0 : L�1] � Array o f m x n b i a s m a t r i c e s
8 ⇤ Y [0 : L] � Array o f m x n l a y e r�i n p u t / o u t p u t m a t r i c e s
9 ⇤ /

10 {
11 GrB Monoid FP32Add ; / / Monoid <f l o a t ,+ ,0.0>
12 GrB Monoid new(&FP32Add , GrB FP32 , GrB PLUS FP32 , 0 . 0 f) ;
13 GrB Semiring FP32AddMul ; / / S e m i r i n g <f l o a t , f l o a t , f l o a t ,+ ,⇤ ,0 .0 >
14 GrB Semiring new(&FP32AddMul , FP32Add , GrB TIMES FP32) ;
15
16 GrB Index m, n ;
17 GrB Matr ix nrows (&m,Y [0]) ; GrB Mat r ix nco l s (&n ,Y [0]) ;
18 GrB Matrix Zero ; / / Zero = 0 . 0
19 GrB Matrix new(&Zero , GrB FP32 ,m, n) ;
20 GrB ass ign (Zero , GrB NULL , GrB NULL , 0 . 0 , GrB ALL ,m, GrB ALL , n , GrB NULL) ;
21
22 f o r (i n t k =0; k<L ; k ++)
23 {
24 GrB mxm(Y[k + 1] ,GrB NULL , GrB NULL , FP32AddMul ,W[k] ,Y[k] , GrB NULL) ; / / Y [k +1] = W[k]⇤Y [k]
25 GrB eWiseAdd (Y[k + 1] ,GrB NULL , GrB NULL , FP32Add ,Y[k +1] ,B[k] , GrB NULL) ; / / Y [k +1] = W[k]⇤Y [k] + B[k]
26 GrB eWiseAdd (Y[k + 1] ,GrB NULL , GrB NULL , GrB MAX FP32 ,Y[k + 1] , Zero , GrB NULL) ; / / Y [k +1] = max (W[k]⇤Y [k] + B[k] , 0)
27 }
28
29 GrB free (& Zero) ;
30 GrB free (&FP32Add) ;
31 GrB free (&FP32AddMul) ;
32
33 re turn GrB SUCCESS ;
34 }

Fig. 4. GraphBLAS implementation of ReLU DNN using the C API.

1/16384

1/4096

1/1024

1/256

1/64

1/16

1/4

1

4

16

1 4 16 64 256 1024 4096 16384 65536 262144

Ex
ec

ut
io

n
ti

m
e

(s
)

1/Sparsity

Fig. 5. Single-threaded (ST) results for GraphBLAS (GrB) and dense linear algebra (BLAS) implementations of the ReLU DNN. Results for GraphBLAS
are in blue, whereas results for BLAS are in red. Each problem size uses a different marker. (Compare blue and red curves with the same marker.

6

D
N

N
 In

fe
re

nc
e

Ex
ec

ut
io

n
Ti

m
e

1/Sparsity

sparse
250x faster

8000x less memory

BLAS dense

GraphBLAS
sparse

Slide - 35

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Volume
•  Challenge: Scale of data beyond what current approaches can handle
•  Hardware: Scale-out, more servers per data center (hyperscale)

Velocity
•  Challenge: Analytics beyond what current approaches can handle
•  Hardware: Scale-up, more transistors per server (accelerators)

Variety
•  Challenge: Diversity beyond what current approaches can handle
•  Hardware: Scale-deep, more customizable processors (FPGAs, ...)

Summary

Requires mathematically rigorous approaches to insulate users from scaling

architecture [14] was developed to provide significantly higher
throughput than the conventional merge sorters.

The k-way merge sorter sorts long sequences of numbers
by using a recursive “divide and conquer” approach. It divides
the sequence into k sequences that have equal, or as equal as
possible, lengths. The k shorter sequences are then sorted
independently and merged to produce the sorted result. The
sorting of k shorter sequences can also be divided into k even
shorter sequences and sorted recursively by using the same
merge sort algorithm. This process is recursively repeated until
the divided sequence length reaches 1. The sorting process
takes order nlogkn memory cycles. The k-way merge sort is
log2k times faster than the 2-way merge sort process when k is
greater than 2. For example, when k = 32, the k-way merge
sorter has five times greater sorter throughput than the 2-way
merge sorter. The main difficulty with implementing a k-way
merge sorter in a conventional processor is that it takes many
clock cycles to figure out the smallest (or largest) value among
k entries during each step of the merge sorting process. Ideally,
the smallest value of k should be computed within one
processor clock cycle for the maximum sorter throughput. The
100% efficient systolic merge sorter [9] can achieve this
performance requirement using k linear systolic array cells and
it is particularly well suited for FPGA and integrated circuit
(IC) implementation since it consists of repeated systolic cells
with nearest-neighbor-only communications.

C. 6D Toroidal Communication Network and
Randomized Message Routing

The new graph processor architecture is a parallel processor
interconnected in a 6D toroidal configuration using high
bandwidth optical links. The 6D toroid provides much higher
communication performance than lower-dimensional toroids
because of the higher bisection bandwidth.

The communication network is designed as a packet-
routing network optimized to support small packet sizes that
are as small as a single sparse matrix element. The network
scheduling and protocol are designed such that successive
communication packets from a node would have randomized
destinations in order to minimize network congestion [15].
This design is a great contrast to typical conventional
multiprocessor message-routing schemes that are based on
much larger message sizes and globally arbitrated routing that
are used in order to minimize the message-routing overhead.
However, large message-based communications are often
difficult to route and can have a relatively high message
contention rate caused by the long time periods during which
the involved communication links are tied up. The small
message sizes, along with randomized destination routing,
minimize message contentions and improve the overall
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3
network for illustration purposes) simulation based on
randomized destination communication versus unique
destination communication. Even though both routing methods
are based on small message sizes, the unique destination
routing has a message contention rate that is closer to the
contention rate of conventional routing algorithms that are

based on large message sizes. The randomized destination
routing achieved approximately six times higher data rate and
network utilization efficiency in the simulation using an
identical network.

Fig. 6. Randomized destination vs. unique destination packet
communication.

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE
MEASUREMENT

Lincoln Laboratory has developed an FPGA prototype of
the graph processor using commercial FPGA boards as shown
in Figure 7. Each board has one large FPGA and two 4-GByte
DDR3 memory banks. Two graph processor nodes are
implemented in each board. A small 4-board chassis
implements an 8-node graph processor tied together with 1D
toroidal network. Since the commercial board offered limited
scalability due to limited number of communication ports for
network connection, the larger prototypes will be developed in
the future using custom FPGA boards that can support 6D
toroidal network and up to 1 million nodes.

Fig. 7. FPGA prototype of the graph processor.

Slide - 36

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Premiere conference on High
Performance Extreme Computing
–  Largest computing conference

in New England (280 people)

•  Invited Speakers
–  Prof. Ivan Sutherland (Turing Award)
–  Trung Tran (DARPA MTO)
–  Andreas Olofsson (DARPA MTO)
–  Prof. Barry Shoop (IEEE President)

•  Special sessions on
–  DARPA Graph Challenge
–  Resilient systems
–  Big Data
–  GPU & FPGA Computing

21st IEEE HPEC Conference
September 12-14, 2017 (ieee-hpec.org)

•  Sustains gov’t leadership position
•  Keeps gov’t users ahead of the technology curve

Platinum
Co-Sponsors

Silver
Sponsor

Cooperating
Society

Media
Sponsor

Technical
Organizer

GPU = Graphics Processing Unit
FPGA = Field Programmable Gate Array

