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Supercomputing Center Focus Areas 

•  Online education and knowledge 
transfer 

•  Expert content, course development, 
and production platform 

•  Online courses, virtualized 
environments, in-person classes, 
workshops, conferences, books 

•  Big data architectures, databases, and 
graph processing 

•  Architecture analysis, benchmarking, 
and advanced mathematics 

•  Database infrastructure, federated 
interfaces, and processing standards 

•  High performance storage and 
compute 

•  Application programming interface 
design, modeling and benchmarking 

•  Supercomputing infrastructure and 
scalable software environments 

Big Data Technologies 

GraphBLAS 
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Education and Outreach 

BigDAWG 

Interactive Supercomputing 

Mathematically rigorous approach to computational challenges 
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Volume 
•  Challenge:  Scale of data beyond what current approaches can handle 

  Social media, cyber networks, internet-of-things, bioinformatics, ... 

Velocity 
•  Challenge:  Analytics beyond what current approaches can handle 

  Engineering simulation, drug discovery, autonomous systems, ... 

Variety 
•  Challenge:  Diversity beyond what current approaches can handle 

  Computer vision, language processing, decision making, ... 

  Large Scale Computing: Challenges 
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Volume 
•  Challenge:  Scale of data beyond what current approaches can handle 
•  Hardware:  Scale-out, more servers per data center (hyperscale) 

Velocity 
•  Challenge:  Analytics beyond what current approaches can handle 
•  Hardware:  Scale-up, more transistors per server (accelerators) 

Variety 
•  Challenge:  Diversity beyond what current approaches can handle 
•  Hardware:  Scale-deep, more customizable processors (FPGAs, ...) 

  Large Scale Computing: Hardware 

Requires mathematically rigorous approaches to insulate users from scaling 

architecture [14] was developed to provide significantly higher 
throughput than the conventional merge sorters. 

The k-way merge sorter sorts long sequences of numbers 
by using a recursive “divide and conquer” approach. It divides 
the sequence into k sequences that have equal, or as equal as 
possible, lengths. The k shorter sequences are then sorted 
independently and merged to produce the sorted result. The 
sorting of k shorter sequences can also be divided into k even 
shorter sequences and sorted recursively by using the same 
merge sort algorithm. This process is recursively repeated until 
the divided sequence length reaches 1. The sorting process 
takes order nlogkn memory cycles. The k-way merge sort is 
log2k times faster than the 2-way merge sort process when k is 
greater than 2. For example, when k = 32, the k-way merge 
sorter has five times greater sorter throughput than the 2-way 
merge sorter.   The main difficulty with implementing a k-way 
merge sorter in a conventional processor is that it takes many 
clock cycles to figure out the smallest (or largest) value among 
k entries during each step of the merge sorting process. Ideally, 
the smallest value of k should be computed within one 
processor clock cycle for the maximum sorter throughput. The 
100% efficient systolic merge sorter [9] can achieve this 
performance requirement using k linear systolic array cells and 
it is particularly well suited for FPGA and integrated circuit 
(IC) implementation since it consists of repeated systolic cells 
with nearest-neighbor-only communications. 

C. 6D Toroidal Communication Network and 
Randomized Message Routing 

The new graph processor architecture is a parallel processor 
interconnected in a 6D toroidal configuration using high 
bandwidth optical links. The 6D toroid provides much higher 
communication performance than lower-dimensional toroids 
because of the higher bisection bandwidth.  

The communication network is designed as a packet-
routing network optimized to support small packet sizes that 
are as small as a single sparse matrix element. The network 
scheduling and protocol are designed such that successive 
communication packets from a node would have randomized 
destinations in order to minimize network congestion [15]. 
This design is a great contrast to typical conventional 
multiprocessor message-routing schemes that are based on 
much larger message sizes and globally arbitrated routing that 
are used in order to minimize the message-routing overhead. 
However, large message-based communications are often 
difficult to route and can have a relatively high message 
contention rate caused by the long time periods during which 
the involved communication links are tied up. The small 
message sizes, along with randomized destination routing, 
minimize message contentions and improve the overall 
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3 
network for illustration purposes) simulation based on 
randomized destination communication versus unique 
destination communication. Even though both routing methods 
are based on small message sizes, the unique destination 
routing has a message contention rate that is closer to the 
contention rate of conventional routing algorithms that are 

based on large message sizes. The randomized destination 
routing achieved approximately six times higher data rate and 
network utilization efficiency in the simulation using an 
identical network. 

Fig. 6. Randomized destination vs. unique destination packet 
communication. 

 

 

 

 

 

 

 

 

 

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE 
MEASUREMENT 

Lincoln Laboratory has developed an FPGA prototype of 
the graph processor using commercial FPGA boards as shown 
in Figure 7.  Each board has one large FPGA and two 4-GByte 
DDR3 memory banks.  Two graph processor nodes are 
implemented in each board.  A small 4-board chassis 
implements an 8-node graph processor tied together with 1D 
toroidal network. Since the commercial board offered limited 
scalability due to limited number of communication ports for 
network connection, the larger prototypes will be developed in 
the future using custom FPGA boards that can support 6D 
toroidal network and up to 1 million nodes.   

Fig. 7. FPGA prototype of the graph processor. 
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High Performance Requirements 
•  Sustaining rapid ingest 
•  Fast analytics 
•  Integrating diverse data 

Analysts Preferred Environments 
•  Familiar 
•  High Level 
•  Mission Focused 
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Python 

Many software technologies 
to choose from 
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Berkeley 

Cloudera 

HortonWorks 

Big Data 
Frameworks 

Diverse software technologies are 
organized into many frameworks  
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Big Data Cloud Database Cloud 
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Cloud Ecosystems 

Diverse frameworks support 
four primary cloud ecosystems 
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Example Big Data Application 
- Integrating Many Stovepiped Databases - 

Sensor Event Databases 
 
 
 
 
 

 
Good for imagery, time series signals 

Catalog Databases 
 
 
 
 
 
 

 

Good for historic, curated data 

Text Databases 
 
 
 
 
 
 

 

Good for human generated data 
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Modern Database Paradigm Shifts 

NoSQL 

Relational Databases (SQL) 2006 

NewSQL 

1970 

Information Retrieval P. BAXENDALE, Editor 

A Relational Model of Data for 
Large Shared Data Banks 

E. F. CODD 
IBM Research Laboratory, San Jose, California 

Future users of large data banks must be protected from 
having to know how the data is organized in the machine (the 
internal representation). A prompting service which supplies 
such information is not a satisfactory solution. Activities of users 
at terminals and most application programs should remain 
unaffected when the internal representation of data is changed 
and even when some aspects of the external representation 
are changed. Changes in data representation will often be 
needed as a result of changes in query, update, and report 
traffic and natural growth in the types of stored information. 

Existing noninferential, formatted data systems provide users 
with tree-structured files or slightly more general network 
models of the data. In Section 1, inadequacies of these models 
are discussed. A model based on n-ary relations, a normal 
form for data base relations, and the concept of a universal 
data sublanguage are introduced. In Section 2, certain opera- 
tions on relations (other than logical inference) are discussed 
and applied to the problems of redundancy and consistency 
in the user’s model. 

KEY WORDS AND PHRASES: data bank, data base, data structure, data 
organization, hierarchies of data, networks of data, relations, derivability, 

redundancy, consistency, composition, join, retrieval language, predicate 
calculus, security, data integrity 

CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29 

1. Relational Model and Normal Form 

1 .I. INTR~xJ~TI~N 
This paper is concerned with the application of ele- 

mentary relation theory to systems which provide shared 
access to large banks of formatted data. Except for a paper 
by Childs [l], the principal application of relations to data 
systems has been to deductive question-answering systems. 
Levein and Maron [2] provide numerous references to work 
in this area. 

In contrast, the problems treated here are those of data 
independence-the independence of application programs 
and terminal activities from growth in data types and 
changes in data representation-and certain kinds of data 
inconsistency which are expected to become troublesome 
even in nondeductive systems. 

Volume 13 / Number 6 / June, 1970 

The relational view (or model) of data described in 
Section 1 appears to be superior in several respects to the 
graph or network model [3,4] presently in vogue for non- 
inferential systems. It provides a means of describing data 
with its natural structure only-that is, without superim- 
posing any additional structure for machine representation 
purposes. Accordingly, it provides a basis for a high level 
data language which will yield maximal independence be- 
tween programs on the one hand and machine representa- 
tion and organization of data on the other. 

A further advantage of the relational view is that it 
forms a sound basis for treating derivability, redundancy, 
and consistency of relations-these are discussed in Section 
2. The network model, on the other hand, has spawned a 
number of confusions, not the least of which is mistaking 
the derivation of connections for the derivation of rela- 
tions (see remarks in Section 2 on the “connection trap”). 

Finally, the relational view permits a clearer evaluation 
of the scope and logical limitations of present formatted 
data systems, and also the relative merits (from a logical 
standpoint) of competing representations of data within a 
single system. Examples of this clearer perspective are 
cited in various parts of this paper. Implementations of 
systems to support the relational model are not discussed. 

1.2. DATA DEPENDENCIES IN PRESENT SYSTEMS 
The provision of data description tables in recently de- 

veloped information systems represents a major advance 
toward the goal of data independence [5,6,7]. Such tables 
facilitate changing certain characteristics of the data repre- 
sentation stored in a data bank. However, the variety of 
data representation characteristics which can be changed 
without logically impairing some application programs is 
still quite limited. Further, the model of data with which 
users interact is still cluttered with representational prop- 
erties, particularly in regard to the representation of col- 
lections of data (as opposed to individual items). Three of 
the principal kinds of data dependencies which still need 
to be removed are: ordering dependence, indexing depend- 
ence, and access path dependence. In some systems these 
dependencies are not clearly separable from one another. 

1.2.1. Ordering Dependence. Elements of data in a 
data bank may be stored in a variety of ways, some involv- 
ing no concern for ordering, some permitting each element 
to participate in one ordering only, others permitting each 
element to participate in several orderings. Let us consider 
those existing systems which either require or permit data 
elements to be stored in at least one total ordering which is 
closely associated with the hardware-determined ordering 
of addresses. For example, the records of a file concerning 
parts might be stored in ascending order by part serial 
number. Such systems normally permit application pro- 
grams to assume that the order of presentation of records 
from such a file is identical to (or is a subordering of) the 

Communications of the ACM 377 

Relational 
Model 

E.F. Codd 
(1970) 

1980 1990 2010 

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber}@google.com

Google, Inc.

Abstract
Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
implemented, and deployed a distributed storage system
for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and thousands of machines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of
servers, and store up to several hundred terabytes of data.
In manyways, Bigtable resembles a database: it shares
many implementation strategies with databases. Paral-
lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
data out of memory or from disk.
Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client API. Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section 5 describes the
fundamentals of the Bigtable implementation, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides
measurements of Bigtable’s performance. We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string

To appear in OSDI 2006 1
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Scalable SQL and NoSQL Data Stores 
Rick Cattell 
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ABSTRACT 
 In this paper, we examine a number of SQL and so-
called “NoSQL” data stores designed to scale simple 
OLTP-style application loads over many servers.  
Originally motivated by Web 2.0 applications, these 
systems are designed to scale to thousands or millions 
of users doing updates as well as reads, in contrast to 
traditional DBMSs and data warehouses. We contrast 
the new systems on their data model, consistency 
mechanisms, storage mechanisms, durability 
guarantees, availability, query support, and other 
dimensions.  These systems typically sacrifice some of 
these dimensions, e.g. database-wide transaction 
consistency, in order to achieve others, e.g. higher 
availability and scalability. 
Note: Bibliographic references for systems are not 
listed, but URLs for more information can be found in 
the System References table at the end of this paper.  

Caveat: Statements in this paper are based on sources 
and documentation that may not be reliable, and the 
systems described are “moving targets,” so some 
statements may be incorrect. Verify through other 
sources before depending on information here. 
Nevertheless, we hope this comprehensive survey is 
useful!  Check for future corrections on the author’s 
web site cattell.net/datastores. 
Disclosure: The author is on the technical advisory 
board of Schooner Technologies and has a consulting 
business advising on scalable databases. 

1. OVERVIEW 
In recent years a number of new systems have been 
designed to provide good horizontal scalability for 
simple read/write database operations distributed over 
many servers.  In contrast, traditional database 
products have comparatively little or no ability to scale 
horizontally on these applications.  This paper 
examines and compares the various new systems. 
Many of the new systems are referred to as “NoSQL” 
data stores.  The definition of NoSQL, which stands 
for “Not Only SQL” or “Not Relational”, is not 
entirely agreed upon.  For the purposes of this paper, 
NoSQL systems generally have six key features: 

1. the ability to horizontally scale “simple 
operation” throughput over many servers,  

2. the ability to replicate and to distribute (partition) 
data over many servers, 

3. a simple call level interface or protocol (in 
contrast to a SQL binding), 

4. a weaker concurrency model than the ACID 
transactions of most relational (SQL) database 
systems, 

5. efficient use of distributed indexes and RAM for 
data storage, and 

6. the ability to dynamically add new attributes to 
data records. 

The systems differ in other ways, and in this paper we 
contrast those differences.  They range in functionality 
from the simplest distributed hashing, as supported by 
the popular memcached open source cache, to highly 
scalable partitioned tables, as supported by Google’s 
BigTable [1].  In fact, BigTable, memcached, and 
Amazon’s Dynamo [2] provided a “proof of concept” 
that inspired many of the data stores we describe here: 
• Memcached demonstrated that in-memory indexes 

can be highly scalable, distributing and replicating 
objects over multiple nodes. 

• Dynamo pioneered the idea of eventual 
consistency as a way to achieve higher availability 
and scalability: data fetched are not guaranteed to 
be up-to-date, but updates are guaranteed to be 
propagated to all nodes eventually. 

• BigTable demonstrated that persistent record 
storage could be scaled to thousands of nodes, a 
feat that most of the other systems aspire to. 

A key feature of NoSQL systems is “shared nothing” 
horizontal scaling – replicating and partitioning data 
over many servers.  This allows them to support a large 
number of simple read/write operations per second.  
This simple operation load is traditionally called OLTP 
(online transaction processing), but it is also common 
in modern web applications 
The NoSQL systems described here generally do not 
provide ACID transactional properties: updates are 
eventually propagated, but there are limited guarantees 
on the consistency of reads.  Some authors suggest a 
“BASE” acronym in contrast to the “ACID” acronym: 
• BASE = Basically Available, Soft state, 

Eventually consistent 
• ACID = Atomicity, Consistency, Isolation, and 

Durability 
The idea is that by giving up ACID constraints, one 
can achieve much higher performance and scalability.   

NewSQL 
Cattell (2010) 

SQL Era NoSQL Era NewSQL Era Future 

Polystore, high 
performance 
ingest and 
analytics 

Fast analytics inside databases Common interface Rapid ingest for internet search 

SQL = Structured Query Language 
NoSQL = Not only SQL 

Apache Prof. Stonebraker 
(MIT) 

NSF & MIT Prof. Stonebraker 
(U.C. Berkeley) 

Larry Ellison 
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Declarative, Mathematically Rigorous Interfaces 

v ATvAT

à 

alice 

bob 

alice 

carl 

bob 

carl 
cited 

cited 

SQL 
Set Operations 

NoSQL 
Graph Operations  

NewSQL 
Linear Algebra 

 
 
 

Associative Array Algebra Provides a Unified Mathematics for SQL, NoSQL, NewSQL 
 
 

Operations in all representations are equivalent and are linear systems 

A = NxM(k1,k2,v,⊕)          (k1,k2,v) = A       C = AT       C = A ⊕ B      C = A ⊗ C       C = A B = A ⊕.⊗ B

from link to 
001 alice cited bob 
002 bob cited alice 
003 alice cited carl 

Associative Array model of SQL, NoSQL, and NewSQL Databases, Kepner et al, HPEC 2016 
Mathematics of Big Data, Kepner & Jananthan, MIT Press 2017  

Operation: finding Alice’s nearest neighbors 

SELECT 'to' FROM T 
WHERE 'from=alice' 
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GraphBLAS.org Standard for Sparse Matrix Math 

•  Six key operations 
A = NxM(i,j,v)        (i,j,v) = A        C = AT          C = A ⊕ B        C = A ⊗ C         C = A B = A ⊕.⊗ B

•  That are composable  
A ⊕ B = B ⊕ A          (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)          A ⊗ (B ⊕ C) = (A ⊗ B) ⊕ (A ⊗ C) 

A ⊗ B = B ⊗ A          (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)              A (B ⊕ C) =     (A B) ⊕ (A C) 

•  Can be used to build standard GraphBLAS functions 
buildMatrix, extractTuples, Transpose, mXm, mXv, vXm, extract, assign, eWiseAdd, ... 

•  Can be used to build a variety of graph utility functions 
Tril(), Triu(), Degreed Filtered BFS, … 

•  Can be used to build a variety of graph algorithms 
Triangle Counting, K-Truss, Jaccard Coefficient, Non-Negative Matrix Factorization, … 

•  That work on a wide range of graphs 
Hyper, multi-directed, multi-weighted, multi-partite, multi-edge CMU SEI 

PNNL 

The GraphBLAS C API Specification, Buluc, Mattson, McMillan, Moreira, Yang, GraphBLAS.org 2017 
GraphBLAS Mathematics, Kepner, GraphBLAS.org 2017 
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•  GraphBLAS library for Accumulo 

•  High performance graph analytics 

•  50x faster than industry standard 

•  Jupyter interactive portal interface 
–  Similar to Mathematica notebooks 

From NoSQL Accumulo to NewSQL Graphulo:, Hutchison et al, HPEC 2016 
D4M 3.0: Extended Database and Language Capabilities, Milechin et al, HPEC 2017 
BFS = Breadth First Search 

Graphulo High Performance Database Library 
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Accumulo
Cassandra
Oracle

4M/s 
(MIT LL 2012) 

115M/s 
(MIT LL 2014) 

1M/s 
(Google 2014) 

108M/s 
(BAH 2013) 

140K/s (Oracle 2013) 

Graph Processing Hardware 

Novel Graph Processor Architecture, Prototype System, and Results, Song, et al., HPEC 2016 
Achieving 100,000,000 database inserts per second using Accumulo and D4M, Kepner et al, HPEC 2014 
BAH = Booz Allen Hamilton 

Lincoln GraphProcessor faster than 200+ node database cluster 

200 M/s 
GraphProcessor 
(MIT LL 2016) 

architecture [14] was developed to provide significantly higher 
throughput than the conventional merge sorters. 

The k-way merge sorter sorts long sequences of numbers 
by using a recursive “divide and conquer” approach. It divides 
the sequence into k sequences that have equal, or as equal as 
possible, lengths. The k shorter sequences are then sorted 
independently and merged to produce the sorted result. The 
sorting of k shorter sequences can also be divided into k even 
shorter sequences and sorted recursively by using the same 
merge sort algorithm. This process is recursively repeated until 
the divided sequence length reaches 1. The sorting process 
takes order nlogkn memory cycles. The k-way merge sort is 
log2k times faster than the 2-way merge sort process when k is 
greater than 2. For example, when k = 32, the k-way merge 
sorter has five times greater sorter throughput than the 2-way 
merge sorter.   The main difficulty with implementing a k-way 
merge sorter in a conventional processor is that it takes many 
clock cycles to figure out the smallest (or largest) value among 
k entries during each step of the merge sorting process. Ideally, 
the smallest value of k should be computed within one 
processor clock cycle for the maximum sorter throughput. The 
100% efficient systolic merge sorter [9] can achieve this 
performance requirement using k linear systolic array cells and 
it is particularly well suited for FPGA and integrated circuit 
(IC) implementation since it consists of repeated systolic cells 
with nearest-neighbor-only communications. 

C. 6D Toroidal Communication Network and 
Randomized Message Routing 

The new graph processor architecture is a parallel processor 
interconnected in a 6D toroidal configuration using high 
bandwidth optical links. The 6D toroid provides much higher 
communication performance than lower-dimensional toroids 
because of the higher bisection bandwidth.  

The communication network is designed as a packet-
routing network optimized to support small packet sizes that 
are as small as a single sparse matrix element. The network 
scheduling and protocol are designed such that successive 
communication packets from a node would have randomized 
destinations in order to minimize network congestion [15]. 
This design is a great contrast to typical conventional 
multiprocessor message-routing schemes that are based on 
much larger message sizes and globally arbitrated routing that 
are used in order to minimize the message-routing overhead. 
However, large message-based communications are often 
difficult to route and can have a relatively high message 
contention rate caused by the long time periods during which 
the involved communication links are tied up. The small 
message sizes, along with randomized destination routing, 
minimize message contentions and improve the overall 
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3 
network for illustration purposes) simulation based on 
randomized destination communication versus unique 
destination communication. Even though both routing methods 
are based on small message sizes, the unique destination 
routing has a message contention rate that is closer to the 
contention rate of conventional routing algorithms that are 

based on large message sizes. The randomized destination 
routing achieved approximately six times higher data rate and 
network utilization efficiency in the simulation using an 
identical network. 

Fig. 6. Randomized destination vs. unique destination packet 
communication. 

 

 

 

 

 

 

 

 

 

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE 
MEASUREMENT 

Lincoln Laboratory has developed an FPGA prototype of 
the graph processor using commercial FPGA boards as shown 
in Figure 7.  Each board has one large FPGA and two 4-GByte 
DDR3 memory banks.  Two graph processor nodes are 
implemented in each board.  A small 4-board chassis 
implements an 8-node graph processor tied together with 1D 
toroidal network. Since the commercial board offered limited 
scalability due to limited number of communication ports for 
network connection, the larger prototypes will be developed in 
the future using custom FPGA boards that can support 6D 
toroidal network and up to 1 million nodes.   

Fig. 7. FPGA prototype of the graph processor. 
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DARPA HIVE and GraphChallenge.org 

•  Parallel processing 
•  Parallel memory access 
•  Fastest (TB/s) to memory 
•  Higher scalability (TB/s) 
•  Optimized for Graphs 

Hierarchical Identify Verify Exploit 
PageRank Pipeline Benchmark: Proposal for a Holistic System Benchmark for Big-Data Platforms, Dreher et al., IPDPS GABB 2016 
Static Graph Challenge: Subgraph Isomorphism, Samsi et al, HPEC 2017 
Streaming Graph Challenge: Stochastic Block Partition, Kao et al, HPEC 2017 
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•  Introduction 

•  Big Data (Scale Out) 

•  Supercomputing (Scale Up) 

•  Machine Learning (Scale Deep) 

•  Summary 

Outline 
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Example Supercomputing Applications 

Nanoscale Materials Modeling 

Aerodynamic Analysis 

Nanophotonic Device Sim 

Lumerical FDTD 

Electromagnetic Simulation 

Molecular Structure Viz 

US3D 

Aerodynamic CFD & Thermo Weather Modeling/Prediction 

Kestrel 

Multi-Physics Analysis Computational Fluid Dynamics Aircraft Collision Avoidance 

ACAS 
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Example Algorithm: Finite Element Method 

Mesh of engine block Corresponding stiffnes 
 matrix K 

Ku = f

Image source: https://www.cise.ufl.edu/research/sparse/matrices/Rothberg/gearbox.html 

Finite element equation 

displacements forces 

•  Standard approach for many engineering problems 
•  Iteratively solves large sparse matrix equations (as many small dense matrices)   
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Example Matrix Math Software Stacks 

High performance matrix math for parallel computers and accelerators 
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Selected Supercomputing Processors and Systems 

Aurora (2019) Summit (2017) 

Processor Specs (2016) 
64 Cores 
128 512 bit vector units 

DGX-1 | DATA SHEET | APR16

SYSTEM SPECIFICATIONS
GPUs 8x Tesla GP100
TFLOPS (GPU FP16 / 
CPU FP32) 

170/3

GPU Memory 16 GB per GPU
CPU Dual 20-core Intel® Xeon® 

E5-2698 v4 2.2 GHz
NVIDIA CUDA® Cores 28672
System Memory 512 GB 2133 MHz DDR4 LRDIMM
Storage 4x 1.92 TB SSD RAID 0
Network Dual 10 GbE, 4 IB EDR
Software Ubuntu Server Linux OS

DGX-1 Recommended GPU 
Driver

System Weight 134 lbs
System Dimensions 866 D x 444 W x 131 H (mm)
Packing Dimensions 1180 D x 730 W x 284 H (mm)
Maximum Power 
Requirements

3200W

Operating Temperature 
Range

10 - 35 °C

 
NVIDIA DGX-1
DEEP LEARNING SYSTEM 

The World’s First Deep Learning Supercomputer  
in a Box
Data scientists and artificial intelligence (AI) researchers require 
accuracy, simplicity, and speed for deep learning success. Faster 
training and iteration ultimately means faster innovation and time-
to-market. 

The NVIDIA® DGX-1™ is the world’s first purpose-built system 
optimized for deep learning, with fully integrated hardware and 
software that can be deployed quickly and easily. Its revolutionary 
performance significantly accelerates training time, making it the 
world's first deep learning supercomputer in a box.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

NVIDIA DGX-1 Delivers 56X More Performance

CPU is dual socket Intel Xeon E5-2697 v3. 170 TF is half precision or FP16

NVIDIA DGX-1

Performance in teraFLOPS

CPU

170 TFLOPS

3 TFLOPS

NVIDIA DGX-1 Delivers 75X Faster Training

CPU is dual socket Intel Xeon E5-2697 v3. 170 TF is half precision or FP16.

0 10X 20X 30X 40X 60X 80X50X 70X

NVIDIA DGX-1

Relative Performance (Based on Time to Train)

CPU

2 Hours

150 Hours
(6.25 Days)

DGX-1 Node Specs (2016) 

Sunway TaihuLight (2016) 

Sunway Processor 
260 Cores 
260 256 bit vector units 

National High-Performance IC Design Center 

All deliver maximum performance on dense matrix math 
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~2 Teraflops on one 
Intel Knights Landing 

•  Parallel Matlab library 

•  High performance dense matrix math 

•  Linear speedup on Intel Knights Landing 

•  Jupyter interactive portal interface 
–  Similar to Mathematica notebooks 

Benchmarking Data Analysis and Machine Learning Applications on the Intel KNL Many-Core Processor, Byun et al., HPEC 2017 
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Manycore system sustains Lincoln’s leadership 
position in interactive supercomputing 

–  Compatible with all existing LLSC software 
–  Provides processing (6x) and bandwidth (20x) for 

physical simulation and machine learning applications 

TX-Green Upgrade 
Processor Intel Knights Landing 

Total Cores 41,472 

Peak Petaflops 1.724 

Top500 Petaflops 1.025 (measured) 

Total Terabytes 124 

Network Link Intel OmniPath 25 GB/s 

Based on Nov 2016 
Top500.org list 

#1 at Lincoln 
#1 at MIT 
#1 in Massachusetts 
#1 in New England  
#2 in the Northeast  
#3 at a US University 
#3 at a University in the 
      Western Hemisphere 
#43 in the United States 
#106 in the World  

Only zero 
carbon 

emission 
system 

in Top500 

Lincoln Laboratory Petascale System 
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•  Parallel simulations produce enormous amounts of data 
•  Parallel file systems designed to meet these requirements 

Supercomputing I/O 

were used in a manner generally representative of a typical
user workload for copying data. Processes in the single-client
node tests were launched with 100ms of delay between each
startup, and, in the large-scale test, the entire run was initiated
concurrently.

Results for the single-client-node run are depicted in Fig-
ure 3.
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Fig. 3: Lustre file system on Infiniband/10 Gigabit Ethernet,
and Amazon S3 on 10 Gigabit Ethernet Performance as a
function of data transfer rate achieved per number of worker
processes dispatched.

On our 10 Gigabit Ethernet-based Lustre system, wire-speed
read and write performance was achieved with as few as 2 cp
worker processes, and a single process was able to achieve
70-80% of peak. Lustre over Infiniband exhibited a similar
performance curve, albeit with a higher potential line rate
that is due to the increased potential speed of the Infiniband
interface.

While data transfer to and from Amazon S3 was able to
reach the same performance levels as the Lustre file system
on our single 10 Gigabit Ethernet test node, it required 12 or
13 separate worker processes to realize peak performance. A
single instance of the AWS copy command (aws s3 cp), with
no modifications to the Python source, is able to achieve a
transfer rate in either direction of approximately 130 MB/s on
our test system before consuming 100% of the single CPU it’s
running on.

Using system-level profiling on the running Python process
handling the data transfer revealed that data were being read
from and written to both the local disk and the network in
8 KB chunks. This buffer size is much too small to achieve
peak performance on anything beyond a very low-bandwidth
network. Further examination reveals that these block and
socket buffer size values appear to be hard-coded within the
system Python libraries themselves; an example is the the
HTTPConnection.send method in the system Python httplib
library, which has a socket buffer size of 8192 explicitly
defined as a constant [24]. Given the extreme level of CPU-
boundedness displayed by these tools when running at high
network rates, it’s possible that the Python interpreter itself is
also contributing to the high levels of resource utilization, as
much of the HTTP protocol and network code in httplib is

written in pure Python and not bound to a library written in
a language such a C or C++.
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Fig. 4: Lustre file system performance scaling on TX-Green
Supercomputer using multiple concurrently active 10 Gigabit
Ethernet client nodes.

In the multi-client benchmark results displayed in Figure 4,
we demonstrate that the Lustre file system, on modern storage
hardware and with a well-designed network architecture, ob-
tains near-linear performance improvement by increasing the
number of connected clients retrieving data from or pushing
data to the central storage array until the underlying physical
limitations of the network and storage hardware are met. While
the results shown in the graph above represent the average
start-to-finish transfer rate of each complete test, a sustained
peak throughput of 480 Gb/s in the read test and 350 Gb/s
in the write test was routinely achieved on the SuperCloud
hardware during the 128-node cluster run.

V. SUMMARY AND FUTURE WORK

The rise of machine learning and graph analytic systems
has created a need for diverse high performance storage and
ways to measure and compare the capabilities of these storage
systems. The Lustre file system and Amazon’s Simple Storage
Service are both designed to address the largest and most
challenging data storage problems. Relatively few comparative
measurements exist to inform decisions about which storage
systems are best suited for particular tasks. This paper provides
a baseline assessment of the performance and capabilities that
can be expected when choosing a storage solution.

The performance tests that we used span the gamut of
parallel I/O scenarios ranging from single-client, single-node
Amazon S3 and Lustre performance to a large-scale multi-
client test designed to demonstrate the capabilities of a modern
storage appliance under heavy load. These results show that
when parallel I/O is used correctly (i.e., many simultaneous
read or write processes), full network bandwidth performance
is achievable and ranged from 10 gigabits/s over a 10 GigE S3
connection to 0.35 terabits/s using Lustre on a 1200-port 10
GigE switch. These results demonstrate that S3 is well-suited
to sharing vast quantities of data over the Internet, while Lustre
is well-suited to processing large quantities of data locally.

We have established that one can achieve a very similar
baseline-level performance when sequentially reading and

were used in a manner generally representative of a typical
user workload for copying data. Processes in the single-client
node tests were launched with 100ms of delay between each
startup, and, in the large-scale test, the entire run was initiated
concurrently.

Results for the single-client-node run are depicted in Fig-
ure 3.
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Fig. 3: Lustre file system on Infiniband/10 Gigabit Ethernet,
and Amazon S3 on 10 Gigabit Ethernet Performance as a
function of data transfer rate achieved per number of worker
processes dispatched.

On our 10 Gigabit Ethernet-based Lustre system, wire-speed
read and write performance was achieved with as few as 2 cp
worker processes, and a single process was able to achieve
70-80% of peak. Lustre over Infiniband exhibited a similar
performance curve, albeit with a higher potential line rate
that is due to the increased potential speed of the Infiniband
interface.

While data transfer to and from Amazon S3 was able to
reach the same performance levels as the Lustre file system
on our single 10 Gigabit Ethernet test node, it required 12 or
13 separate worker processes to realize peak performance. A
single instance of the AWS copy command (aws s3 cp), with
no modifications to the Python source, is able to achieve a
transfer rate in either direction of approximately 130 MB/s on
our test system before consuming 100% of the single CPU it’s
running on.

Using system-level profiling on the running Python process
handling the data transfer revealed that data were being read
from and written to both the local disk and the network in
8 KB chunks. This buffer size is much too small to achieve
peak performance on anything beyond a very low-bandwidth
network. Further examination reveals that these block and
socket buffer size values appear to be hard-coded within the
system Python libraries themselves; an example is the the
HTTPConnection.send method in the system Python httplib
library, which has a socket buffer size of 8192 explicitly
defined as a constant [24]. Given the extreme level of CPU-
boundedness displayed by these tools when running at high
network rates, it’s possible that the Python interpreter itself is
also contributing to the high levels of resource utilization, as
much of the HTTP protocol and network code in httplib is

written in pure Python and not bound to a library written in
a language such a C or C++.
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Fig. 4: Lustre file system performance scaling on TX-Green
Supercomputer using multiple concurrently active 10 Gigabit
Ethernet client nodes.

In the multi-client benchmark results displayed in Figure 4,
we demonstrate that the Lustre file system, on modern storage
hardware and with a well-designed network architecture, ob-
tains near-linear performance improvement by increasing the
number of connected clients retrieving data from or pushing
data to the central storage array until the underlying physical
limitations of the network and storage hardware are met. While
the results shown in the graph above represent the average
start-to-finish transfer rate of each complete test, a sustained
peak throughput of 480 Gb/s in the read test and 350 Gb/s
in the write test was routinely achieved on the SuperCloud
hardware during the 128-node cluster run.

V. SUMMARY AND FUTURE WORK

The rise of machine learning and graph analytic systems
has created a need for diverse high performance storage and
ways to measure and compare the capabilities of these storage
systems. The Lustre file system and Amazon’s Simple Storage
Service are both designed to address the largest and most
challenging data storage problems. Relatively few comparative
measurements exist to inform decisions about which storage
systems are best suited for particular tasks. This paper provides
a baseline assessment of the performance and capabilities that
can be expected when choosing a storage solution.

The performance tests that we used span the gamut of
parallel I/O scenarios ranging from single-client, single-node
Amazon S3 and Lustre performance to a large-scale multi-
client test designed to demonstrate the capabilities of a modern
storage appliance under heavy load. These results show that
when parallel I/O is used correctly (i.e., many simultaneous
read or write processes), full network bandwidth performance
is achievable and ranged from 10 gigabits/s over a 10 GigE S3
connection to 0.35 terabits/s using Lustre on a 1200-port 10
GigE switch. These results demonstrate that S3 is well-suited
to sharing vast quantities of data over the Internet, while Lustre
is well-suited to processing large quantities of data locally.

We have established that one can achieve a very similar
baseline-level performance when sequentially reading and

Performance Measurements of Supercomputing and Cloud Storage Solutions, Jones et al, HPEC 2017 
*Over 10 GigE Connection to Amazon 

* 
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•  Introduction 

•  Big Data (Scale Out) 

•  Supercomputing (Scale Up) 

•  Machine Learning (Scale Deep) 

•  Summary 

Outline 
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86 1955 WESTERN JOINT COMPUTER CONFERENCE 

Generalization of Pattern Recognition in a 
Self-Organizing System* 

W. A. CLARKf AND B. G. FARLEYf 

Summary—A self-organizing system reported upon earlier is 
briefly described. Two further experiments to determine its proper-
ties have been carried out. The first demonstrates that self-organiza-
tion still takes place even if the input patterns are subjected to con-
siderable random variation. The second experiment indicates that, 
after organization with the usual fixed patterns, the system classifies 
other input patterns statistically according to a simple preponderance 
criterion. Significance of this result as a generalization in pattern 
recognition is discussed. Some remarks are made on methods of 
simulation of such systems and their relation to computer design. 

D E S C R I P T I O N O F S E L F - O R G A N I Z I N G S Y S T E M 

IN A P R E V I O U S paper 1 the au thors described a sys-
t em which organized itself from an initially r andom 
condit ion to a s t a t e in which discr iminat ion of two 

different i npu t p a t t e r n s 2 was accomplished. T h e be-
hav ior of t he sys tem was s imulated b y means of a 
digi tal compu te r—th e M e m o r y T e s t C o m p u t e r of 
Lincoln Labora to ry . 

Briefly, the self-organizing system was composed of 
two pa r t s . T h e first p a r t received i npu t p a t t e r n s and 
t ransformed t h e m into ou tpu t s , and the second p a r t 
ac ted upon pa rame te r s of t he first so as to modify the 
i n p u t - o u t p u t t ransformat ion according to cer tain fixed 
cri teria. These p a r t s were te rmed the t ransformat ion 
and the modifier, respectively. 

T h e t ransformat ion is a r andomly in terconnected 
ne twork of nonlinear e lements , each e lement having a 
definite threshold for incoming excitat ion, below which 
no act ion occurs, and above which the e lement "fires." 
W h e n an e lement fires, i ts threshold immedia te ly rises 
effectively to infinity (it canno t be fired), and then , after 
a shor t fixed delay, falls exponent ial ly back toward i ts 
quiescent value. Fu r the rmore , a t some shor t t ime after 
firing, an e lement t r ansmi t s exci tat ion to all o ther eler 
m e n t s to which i t is connected. T h e effectiveness of the 
exci ta t ion t h u s t r an smi t t e d to a succeeding e lement is 
de te rmined b y a p rope r ty of the par t icu lar connection 
known as i ts "weight ." In general, there will be several 
incoming connect ions a t a n y element , each hav ing i ts 
individual weight as shown in Fig. 1. A t t he ins tan t of 
t ransmission (which is the t ime of impulse arr ival a t the 
succeeding e lement) , the appropr ia te weight is added to 
a n y exci ta t ion a l ready present a t the succeeding cell. 

* The research reported in this document was supported jointly 
by the Army, the Navy, and the Air Force under contract with the 
Massachusetts Institute of Technology. 

f Lincoln Laboratory, Massachusetts Institute of Technology, 
Lexington, Mass. 1 B. G. Farley and W. A. Clark, "Simulation of self-organizing 
systems by digital computer," Trans. IRE, vol. PGIT-4, pp. 76-84; 
September, 1954. 

2 In this paper, the word "pattern" is synonymous with "con-
figuration." 

Thereaf ter the excitat ion decays exponent ia l ly to zero. 
If a t a n y t ime this exci tat ion exceeds t he threshold of 
the succeeding element, the e lement performs its firing 
cycle and t r ansmi t s i ts own exci tat ions . 

Fig. 1—Typical network elements i and j showing 
connection weights w. 

A ne twork such as the one described is suggestive of 
ne tworks of the nerve cells, or neurons , of physiology, 
b u t since t h e detai ls of neuron in terac t ion are a s ye t un-
certain, i t canno t even be said t h a t the ne tworks are 
identical wi thou t some simplifications which are present . 

In the work ment ioned, the ne twork was ac t iva ted 
and a n o u t p u t obta ined in the following way . T h e net 
was divided arb i t rar i ly into two groups, designated as 
i npu t and o u t p u t groups. T h e o u t p u t g roup was further 
subdivided in two, and an o u t p u t was defined a t a n y 
i n s t an t b y the difference in the n u m b e r of e lements fired 
in t he two subgroups dur ing the ins tan t . Th i s a r range-
m e n t migh t be te rmed a push-pull o u t p u t . 

T h e i npu t g roup was also subdivided in to two sub-
groups, and two fixed inpu t p a t t e r n s were provided, 
usual ly designated as px and p2. I n p u t pi consisted in 
add ing a large excitat ion into all the i npu t e lements of 
one subgroup s imul taneously and repet i t ively a t a con-
s t a n t period, b u t doing nothing to t he o the r subgroup. 
I n p u t p2 was jus t the reverse. In th is w a y o u t p u t ac-
t iv i ty character is t ic of the inpu t p a t t e r n was obta ined. 

I t was now desired to provide a modifier ac t ing upon 
pa rame te r s of the ne t so as to gradual ly reorganize it to 
ob ta in o u t p u t ac t iv i ty of a previously specified charac-
terist ic, namely , t h a t pa t t e rn s pi and pi would a lways 
dr ive the o u t p u t in previously specified direct ions. In 
our exper iments , pi was made to dr ive t he o u t p u t in a 
negat ive direction, t h a t is to say, pi causes more firing 
to t a k e place on the average in t he first o u t p u t subgroup 
t h a n in the second. In the case of p%, t he s i tuat ion was 
exact ly reversed. 

T h i s desired organizat ion of the net was accomplished 
b y means of va ry ing the weights ment ioned above in the 
following way . Examina t ion is m a d e of the change in 
o u t p u t a t every ins tan t . If a change in a favorable direc-
t ion occurs (e.g. negat ive change in case pi is t he inpu t 
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lated by the program. In the event that the simulation 
experiment makes extensive use of such randomness it 
would be desirable to incorporate a source of uniformly-
distributed random numbers as one of the electronic 
elements of the computer. Such an element would, of 
course, also be of great value in statistical work and 
monte-carlo calculations in general. 

Finally, it is worth mentioning that simulation experi-
ments involving partially random program behavior, 
unlike arithmetic computations, generally require the 

INTRODUCTION 

WE CONSIDER the process we call Pattern 
Recognition. By this we mean the extraction of 
the significant features of data from a back-

ground of irrelevant detail. What we are interested in is 
simulating this process on digital computers. We give 
examples on three levels of complexity corresponding 
to the subjects of the other three speakers here today. 
We examine in detail the problem on the second level, 
visual recognition of simple shapes. 

Finally, we show how our attack on that problem can 
be extended so that the computer is essentially perform-
ing a learning process and constructing new concepts on 
the basis of its experience. 

PATTERN RECOGNITION 

By pattern recognition we mean the extraction of 
the significant features from a background of irrelevant 
detail. We are interested in simulating this on digital 
computers for several reasons. First, it is the kind of 
thing that brains seem to do very well. Secondly, it is 
the kind of thing that computing machines do not do 
very well yet. Thirdly, it is a productive problem—it 
leads naturally to studying other processes, such as 
learning. And, finally, it has many fascinating applica-
tions on its own. 

We shall not review here the valuable work that has 
been done and is being done elsewhere. 

EXAMPLES OF PATTERN RECOGNITION 

Consider Fig. 1. The horizontal lines on the left differ 
from those on the right in having vertical spikes mostly 
at the left end. That is, here there are two patterns: 

* The work in this paper was sponsored jointly by the U. S. Army, 
U. S. Navy, and U. S. Air Force under contract with M.I.T. 

t Lincoln Laboratory, Massachusetts Institute of Technology, 
Lexington, Mass. 

presence of the experimenter at the computer, a t least 
during the program checkout phase and subsequently 
whenever large changes in operating parameters are 
made. For this reason any features which assist the ex-
perimenter in evaluating the operation of various parts 
of the program "on the spot" are of great value. In this 
category one might include programmed cathode-ray 
tube displays, audio output, and the ability to print out 
selected memory registers without stopping the com-
puter. 

those with a preponderance at the left end and those 
with a preponderance at the right end. The notion of 
simple preponderance or elemental discrimination is 
clearly one of the most primitive sources of patterns. 

iiij L , . llhi.l 

JL LLL 

I lilll , L l l i 
Fig. 1 

Here we have filtered each line from perhaps 100 bits 
down to just one. I t is this filtering that is pattern 
recognition. 

Our next example is the visual recognition of simple 
shapes. This is a two-dimensional problem, of course, 
while the previous one was merely one-dimensional. 
Both the shapes in Fig. 2 are clearly squares though (1) 
they are in different places, (2) they have different sizes, 
(3) one is hollow, the other not, and (4) they have dif-
ferent orientations. 

Fig. 2 

Our final example, like our first, divides all the con-
figurations of data into two classes. From every chess 
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only one move deep, it is fundamentally grounded in the 
tactics, which extend much further into the future. 

The decision is now made whether to make the avail-
able set suffice, or whether to return and work some 
more: to add and modify the goals and tactics. This is a 
level-of-aspiration type of decision, which will depend 
not only on whether the alternatives are "good enough," 
but also on how much time remains, and whether the 
move is crucial. Only if the decision is made not to ex-
plore and expand further, is the best alternative picked 
from the limited set and punched into the card as the 
machine's actual move. 

The term "best alternative," is used in a very casual 
way. The evaluations consist of many numbers, at least 
one for each goal. It is clear that if a single alternative 
dominates all others, it should be chosen. It is also fairly 
clear that an alternative which achieves a very im-
portant subgoal is to be preferred over one which only 
increases the likelihood of a few very subordinate ones. 
But basically this is a multiple value situation, and in 
general no such simple rules can be expected to indicate 
a single best action. The problem for the machine is not 
to somehow obtain a magic formula to solve the unsolv-
able but to make a reasonable choice with least effort 
and proceed with more productive work. There are 
other ways to deal with the problem; for instance, in-
clude conflict as a fundamental consideration in the 
decision to explore further. 

Thus, at each move the machine can be expected to 
iterate several times until it achieves an alternative that 
it likes, or until it runs out of time and thus loses the 
game by not being smart enough or lucky enough. 

PERFORMANCE SCHEMA 

The pieces now exist to give an over-all schema for 
the performance system of the chess learning machine. 
This is a set of mechanisms which is sufficient to enable 
the machine to play chess. There is no learning in this 
system; it will play no better next time because it played 
this time. If the content of all the expressions required is 
appropriate, it will play good chess; if they are not, it 
will play very poor chess. 

This performance system is highly adaptive. A goal 
structure peculiar to each play of the game is generated 
during the course of play. Tactics reflect the minute de-
tail of the current situation. This short-run adaptability 
is not to be confused with learning which would perma-
nently affect the way the machine would play in the 
future. 

Fig. 1 gives the schema of operation. Rather than 
present as systematic and complete a representation as 
possible, attention has been given to relating the ele-
ments discussed so far. The rectangles represent the 
major kinds of information in the system. These may be 
viewed as memories. The arrows indicate processes that 
operate on one kind of information to produce another. 
The small writing by these arrows relates these processes 

to key words used earlier. Some of the main decisions 
are put in circles, since it makes the diagram easier to 
follow. The programs for carrying out most of these 
processes are the various nets, like the classification net. 
For the sake of clarity, these are not shown as explicit 
kinds of information, although they certainly occupy a 
large part of the computer's memory. 

input 

OPPONENTS 
MOVE 

classify OPPONENTS 
GOALS 

t eliminate 
1 useless branches ikelihooab 

CURRENT 
TACTICS 

tactic 
se^rc h 

.r select action from ea,ch 

AVAILABLE 
ALTERNATIVES 

get new s tep by s tep 
position i computation 

EVALUATION 
FOR. EACH ALT 

transformation 
rules 

v*>c i choose"bes t ' Y " " edtern&tive 

MACHINES 
MOVE 

t out put 
Fig. 1—Schematic flow diagram for performance system. 

Each sequence always starts with an opponent's 
move being received (at the top). The process continues 
(downward) by a series of straightforward computa-
tions until the question is reached whether the situation 
is "good enough." This is the fundamental question. If 
the answer is yes, the machine has only to choose from 
among the available alternatives and play, thus ending 
the sequence (down). So far the effort spent is nominal. 
If, however, the answer is no, the machine proceeds to 
the modification and extension of the goals and tactics 
(to the right and up). This part is of indeterminate dur-
ation and effort and utilizes all of the complex apparatus 
that has been built up. Following this, the machine 
again attempts to produce a move (downward again). 
This is the fundamental cycle: to try to decide on a 
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Fig. 10—A4, after averaging with threshold 13. 
Fig. 6—A3, after averaging with threshold 5. 

For a low threshold, such as 5 for a 5 X5 window, the 
image will be thickened. As the threshold is raised a 
thinning takes place. This is evident in Figs. 7 through 
11. I t is particularly significant that for a threshold of 
15, the corner point and two junction points are iso-
lated. The same phenomenon is shown in Figs. 12 
through 17. The thick A of Fig. 18 has a blank strip and 
one small hole. For the low thresholds these irregulari-
ties are removed and for the high thresholds they are 
emphasized, as shown in Figs. 18 through 25. 

Fig. 11—A4, after averaging with thresholdJ15. 

Fig. 7—A4, input image. Fig. 12—A5, input image. 

Fig. 8—A4, after averaging with threshold 5. Fig. 13—A5, after averaging with threshold 5. 

Fig. 9—A4, after averaging with threshold 10. Fig. 14—A5, after averaging with threshold 10. 

Vision 
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•  Increased abstraction at deeper layers 
yi+1 = h(Wi yi + bi) 

   requires a non-linear function, such as 
h(y) = max(y,0) 

•  Matrix multiply Wi yi dominates compute 

    Remark: can rewrite using GraphBLAS as 
yi+1 = Wi yi ⊗ bi ⊕ 0 

        where ⊕ = max() and ⊗ = + 

   DNN oscillates over two linear semirings 
S1 = (          ,  +   ,x,  0,1) 
S2 = ({-∞ ∪ },max,+,-∞,0) 

Deep Neural Networks (DNNs) for Machine Learning 

Input 
Features 

Output 
Classification 

Edges 
Object Parts 

Objects 

y0 W0
b0 

W1
b1 

W2
b2 

W3
b3 

y2 y3 

y4 

y1 

Enabling Massive Deep Neural Networks with the GraphBLAS 
Kepner, Kumar,́ Moreira, Pattnaik, Serrano, Tufo, HPEC 2017 
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•  Lots of machine learning software 
•  Designed for diverse data 
•  Jupyter interactive portal interface 

–  Similar to Mathematica notebooks 

Example Machine Learning Software 
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•  Intel Knights Landing adds enhanced vector processing to a 
general purpose processor 

•  Nvidia DGX-1 integrates 8 video game processors 
•  Intel Arria adds FPGA support for customized logic 
•  Google TPU is a custom processor for dense neural networks 
•  Lincoln Laboratory GraphProcessor is a custom chassis for 

sparse matrix mathematics 

Example Machine Learning Hardware 

DGX-1 | DATA SHEET | APR16

SYSTEM SPECIFICATIONS
GPUs 8x Tesla GP100
TFLOPS (GPU FP16 / 
CPU FP32) 

170/3

GPU Memory 16 GB per GPU
CPU Dual 20-core Intel® Xeon® 

E5-2698 v4 2.2 GHz
NVIDIA CUDA® Cores 28672
System Memory 512 GB 2133 MHz DDR4 LRDIMM
Storage 4x 1.92 TB SSD RAID 0
Network Dual 10 GbE, 4 IB EDR
Software Ubuntu Server Linux OS

DGX-1 Recommended GPU 
Driver

System Weight 134 lbs
System Dimensions 866 D x 444 W x 131 H (mm)
Packing Dimensions 1180 D x 730 W x 284 H (mm)
Maximum Power 
Requirements

3200W

Operating Temperature 
Range

10 - 35 °C

 
NVIDIA DGX-1
DEEP LEARNING SYSTEM 

The World’s First Deep Learning Supercomputer  
in a Box
Data scientists and artificial intelligence (AI) researchers require 
accuracy, simplicity, and speed for deep learning success. Faster 
training and iteration ultimately means faster innovation and time-
to-market. 

The NVIDIA® DGX-1™ is the world’s first purpose-built system 
optimized for deep learning, with fully integrated hardware and 
software that can be deployed quickly and easily. Its revolutionary 
performance significantly accelerates training time, making it the 
world's first deep learning supercomputer in a box.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

NVIDIA DGX-1 Delivers 56X More Performance

CPU is dual socket Intel Xeon E5-2697 v3. 170 TF is half precision or FP16

NVIDIA DGX-1

Performance in teraFLOPS

CPU

170 TFLOPS

3 TFLOPS

NVIDIA DGX-1 Delivers 75X Faster Training

CPU is dual socket Intel Xeon E5-2697 v3. 170 TF is half precision or FP16.

0 10X 20X 30X 40X 60X 80X50X 70X

NVIDIA DGX-1

Relative Performance (Based on Time to Train)

CPU

2 Hours

150 Hours
(6.25 Days)

architecture [14] was developed to provide significantly higher 
throughput than the conventional merge sorters. 

The k-way merge sorter sorts long sequences of numbers 
by using a recursive “divide and conquer” approach. It divides 
the sequence into k sequences that have equal, or as equal as 
possible, lengths. The k shorter sequences are then sorted 
independently and merged to produce the sorted result. The 
sorting of k shorter sequences can also be divided into k even 
shorter sequences and sorted recursively by using the same 
merge sort algorithm. This process is recursively repeated until 
the divided sequence length reaches 1. The sorting process 
takes order nlogkn memory cycles. The k-way merge sort is 
log2k times faster than the 2-way merge sort process when k is 
greater than 2. For example, when k = 32, the k-way merge 
sorter has five times greater sorter throughput than the 2-way 
merge sorter.   The main difficulty with implementing a k-way 
merge sorter in a conventional processor is that it takes many 
clock cycles to figure out the smallest (or largest) value among 
k entries during each step of the merge sorting process. Ideally, 
the smallest value of k should be computed within one 
processor clock cycle for the maximum sorter throughput. The 
100% efficient systolic merge sorter [9] can achieve this 
performance requirement using k linear systolic array cells and 
it is particularly well suited for FPGA and integrated circuit 
(IC) implementation since it consists of repeated systolic cells 
with nearest-neighbor-only communications. 

C. 6D Toroidal Communication Network and 
Randomized Message Routing 

The new graph processor architecture is a parallel processor 
interconnected in a 6D toroidal configuration using high 
bandwidth optical links. The 6D toroid provides much higher 
communication performance than lower-dimensional toroids 
because of the higher bisection bandwidth.  

The communication network is designed as a packet-
routing network optimized to support small packet sizes that 
are as small as a single sparse matrix element. The network 
scheduling and protocol are designed such that successive 
communication packets from a node would have randomized 
destinations in order to minimize network congestion [15]. 
This design is a great contrast to typical conventional 
multiprocessor message-routing schemes that are based on 
much larger message sizes and globally arbitrated routing that 
are used in order to minimize the message-routing overhead. 
However, large message-based communications are often 
difficult to route and can have a relatively high message 
contention rate caused by the long time periods during which 
the involved communication links are tied up. The small 
message sizes, along with randomized destination routing, 
minimize message contentions and improve the overall 
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3 
network for illustration purposes) simulation based on 
randomized destination communication versus unique 
destination communication. Even though both routing methods 
are based on small message sizes, the unique destination 
routing has a message contention rate that is closer to the 
contention rate of conventional routing algorithms that are 

based on large message sizes. The randomized destination 
routing achieved approximately six times higher data rate and 
network utilization efficiency in the simulation using an 
identical network. 

Fig. 6. Randomized destination vs. unique destination packet 
communication. 

 

 

 

 

 

 

 

 

 

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE 
MEASUREMENT 

Lincoln Laboratory has developed an FPGA prototype of 
the graph processor using commercial FPGA boards as shown 
in Figure 7.  Each board has one large FPGA and two 4-GByte 
DDR3 memory banks.  Two graph processor nodes are 
implemented in each board.  A small 4-board chassis 
implements an 8-node graph processor tied together with 1D 
toroidal network. Since the commercial board offered limited 
scalability due to limited number of communication ports for 
network connection, the larger prototypes will be developed in 
the future using custom FPGA boards that can support 6D 
toroidal network and up to 1 million nodes.   

Fig. 7. FPGA prototype of the graph processor. 
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•  Caffe is a widely used machine learning 
package developed at UC Berkeley 

•  Intel Knights Landing processor delivers 
5.4x more performance per rack over 
standard Intel Xeon processor 

Performance: Caffe Deep Learning Framework 
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Knights Landing Figure 3: Features extracted from a deep network,

visualized in a 2-dimensional space. Note the clear
separation between categories, indicative of a suc-
cessful embedding.

Learning Semantic Features In addition to end-to-end
training, Ca↵e can also be used to extract semantic features
from images using a pre-trained network. These features
can be used “downstream” in other vision tasks with great
success [2]. Figure 3 shows a two-dimensional embedding
of all the ImageNet validation images, colored by a coarse
category that they come from. The nice separation testifies
to a successful semantic embedding.
Intriguingly, this learned feature is useful for a lot more

than object categories. For example, Karayev et al. have
shown promising results finding images of di↵erent styles
such as “Vintage” and “Romantic” using Ca↵e features (Fig-
ure 4) [6].

Ethereal HDR Melancholy Minimal

Figure 4: Top three most-confident positive pre-
dictions on the Flickr Style dataset, using a Ca↵e-
trained classifier.

Object Detection Most notably, Ca↵e has enabled us
to obtain by far the best performance on object detection,
evaluated on the hardest academic datasets: the PASCAL
VOC 2007-2012 and the ImageNet 2013 Detection challenge
[3].
Girshick et al. [3] have combined Ca↵e together with tech-

niques such as Selective Search [10] to e↵ectively perform
simultaneous localization and recognition in natural images.
Figure 5 shows a sketch of their approach.
Beginners’ Guides To help users get started with in-

stalling, using, and modifying Ca↵e, we have provided in-
structions and tutorials on the Ca↵e webpage. The tuto-
rials range from small demos (MNIST digit recognition) to
serious deployments (end-to-end learning on ImageNet).
Although these tutorials serve as e↵ective documentation

of the functionality of Ca↵e, the Ca↵e source code addition-
ally provides detailed inline documentation on all modules.

1. Input 
image

aeroplane? no.

...
person? yes.

tvmonitor? no.

...

DNN

Figure 5: The R-CNN pipeline that uses Ca↵e for
object detection.

This documentation will be exposed in a standalone web
interface in the near future.

5. AVAILABILITY
Source code is published BSD-licensed on GitHub.5 Project

details, step-wise tutorials, and pre-trained models are on
the homepage.6 Development is done in Linux and OS X,
and users have reported Windows builds. A public Ca↵e
Amazon EC2 instance is coming soon.
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•  Large neural networks drive 
machine learning performance 
–  100,000s features 
–  10s of layers 
–  100,000s of categories 

•  Larger networks need memory 
–  Requires sparse implementation 

•  Natural fit for GraphBLAS 

Next Generation: Sparse Neural Networks 

Enabling Massive Deep Neural Networks with the GraphBLAS 
Kepner, Kumar,́ Moreira, Pattnaik, Serrano, Tufo, HPEC 2017 

1 # i n c l u d e ”GraphBLAS . h ”
2
3 GrB Info dnn ( GrB Matrix ⇤Y, GrB Matrix ⇤W, GrB Matrix ⇤B , GrB Index L )
4 /⇤
5 ⇤ L � Number o f l a y e r s
6 ⇤ W[ 0 : L�1] � Array o f m x m w e i g h t m a t r i c e s
7 ⇤ B [ 0 : L�1] � Array o f m x n b i a s m a t r i c e s
8 ⇤ Y [ 0 : L ] � Array o f m x n l a y e r�i n p u t / o u t p u t m a t r i c e s
9 ⇤ /

10 {
11 GrB Monoid FP32Add ; / / Monoid <f l o a t ,+ ,0.0>
12 GrB Monoid new(&FP32Add , GrB FP32 , GrB PLUS FP32 , 0 . 0 f ) ;
13 GrB Semiring FP32AddMul ; / / S e m i r i n g <f l o a t , f l o a t , f l o a t ,+ ,⇤ ,0 .0 >
14 GrB Semiring new(&FP32AddMul , FP32Add , GrB TIMES FP32 ) ;
15
16 GrB Index m, n ;
17 GrB Matr ix nrows (&m,Y [ 0 ] ) ; GrB Mat r ix nco l s (&n ,Y [ 0 ] ) ;
18 GrB Matrix Zero ; / / Zero = 0 . 0
19 GrB Matrix new(&Zero , GrB FP32 ,m, n ) ;
20 GrB ass ign ( Zero , GrB NULL , GrB NULL , 0 . 0 , GrB ALL ,m, GrB ALL , n , GrB NULL ) ;
21
22 f o r ( i n t k =0; k<L ; k ++)
23 {
24 GrB mxm(Y[ k + 1] ,GrB NULL , GrB NULL , FP32AddMul ,W[ k ] ,Y[ k ] , GrB NULL ) ; / / Y [ k +1] = W[ k ]⇤Y [ k ]
25 GrB eWiseAdd (Y[ k + 1] ,GrB NULL , GrB NULL , FP32Add ,Y[ k +1 ] ,B[ k ] , GrB NULL ) ; / / Y [ k +1] = W[ k ]⇤Y [ k ] + B[ k ]
26 GrB eWiseAdd (Y[ k + 1] ,GrB NULL , GrB NULL , GrB MAX FP32 ,Y[ k + 1] , Zero , GrB NULL ) ; / / Y [ k +1] = max (W[ k ]⇤Y [ k ] + B[ k ] , 0 )
27 }
28
29 GrB free (& Zero ) ;
30 GrB free (&FP32Add ) ;
31 GrB free (&FP32AddMul ) ;
32
33 re turn GrB SUCCESS ;
34 }

Fig. 4. GraphBLAS implementation of ReLU DNN using the C API.
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Volume 
•  Challenge:  Scale of data beyond what current approaches can handle 
•  Hardware:  Scale-out, more servers per data center (hyperscale) 

Velocity 
•  Challenge:  Analytics beyond what current approaches can handle 
•  Hardware:  Scale-up, more transistors per server (accelerators) 

Variety 
•  Challenge:  Diversity beyond what current approaches can handle 
•  Hardware:  Scale-deep, more customizable processors (FPGAs, ...) 

Summary 

Requires mathematically rigorous approaches to insulate users from scaling 

architecture [14] was developed to provide significantly higher 
throughput than the conventional merge sorters. 

The k-way merge sorter sorts long sequences of numbers 
by using a recursive “divide and conquer” approach. It divides 
the sequence into k sequences that have equal, or as equal as 
possible, lengths. The k shorter sequences are then sorted 
independently and merged to produce the sorted result. The 
sorting of k shorter sequences can also be divided into k even 
shorter sequences and sorted recursively by using the same 
merge sort algorithm. This process is recursively repeated until 
the divided sequence length reaches 1. The sorting process 
takes order nlogkn memory cycles. The k-way merge sort is 
log2k times faster than the 2-way merge sort process when k is 
greater than 2. For example, when k = 32, the k-way merge 
sorter has five times greater sorter throughput than the 2-way 
merge sorter.   The main difficulty with implementing a k-way 
merge sorter in a conventional processor is that it takes many 
clock cycles to figure out the smallest (or largest) value among 
k entries during each step of the merge sorting process. Ideally, 
the smallest value of k should be computed within one 
processor clock cycle for the maximum sorter throughput. The 
100% efficient systolic merge sorter [9] can achieve this 
performance requirement using k linear systolic array cells and 
it is particularly well suited for FPGA and integrated circuit 
(IC) implementation since it consists of repeated systolic cells 
with nearest-neighbor-only communications. 

C. 6D Toroidal Communication Network and 
Randomized Message Routing 

The new graph processor architecture is a parallel processor 
interconnected in a 6D toroidal configuration using high 
bandwidth optical links. The 6D toroid provides much higher 
communication performance than lower-dimensional toroids 
because of the higher bisection bandwidth.  

The communication network is designed as a packet-
routing network optimized to support small packet sizes that 
are as small as a single sparse matrix element. The network 
scheduling and protocol are designed such that successive 
communication packets from a node would have randomized 
destinations in order to minimize network congestion [15]. 
This design is a great contrast to typical conventional 
multiprocessor message-routing schemes that are based on 
much larger message sizes and globally arbitrated routing that 
are used in order to minimize the message-routing overhead. 
However, large message-based communications are often 
difficult to route and can have a relatively high message 
contention rate caused by the long time periods during which 
the involved communication links are tied up. The small 
message sizes, along with randomized destination routing, 
minimize message contentions and improve the overall 
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3 
network for illustration purposes) simulation based on 
randomized destination communication versus unique 
destination communication. Even though both routing methods 
are based on small message sizes, the unique destination 
routing has a message contention rate that is closer to the 
contention rate of conventional routing algorithms that are 

based on large message sizes. The randomized destination 
routing achieved approximately six times higher data rate and 
network utilization efficiency in the simulation using an 
identical network. 

Fig. 6. Randomized destination vs. unique destination packet 
communication. 

 

 

 

 

 

 

 

 

 

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE 
MEASUREMENT 

Lincoln Laboratory has developed an FPGA prototype of 
the graph processor using commercial FPGA boards as shown 
in Figure 7.  Each board has one large FPGA and two 4-GByte 
DDR3 memory banks.  Two graph processor nodes are 
implemented in each board.  A small 4-board chassis 
implements an 8-node graph processor tied together with 1D 
toroidal network. Since the commercial board offered limited 
scalability due to limited number of communication ports for 
network connection, the larger prototypes will be developed in 
the future using custom FPGA boards that can support 6D 
toroidal network and up to 1 million nodes.   

Fig. 7. FPGA prototype of the graph processor. 
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•  Premiere conference on High 
Performance Extreme Computing 
–  Largest computing conference  

in New England (280 people) 

•  Invited Speakers 
–  Prof. Ivan Sutherland (Turing Award) 
–  Trung Tran (DARPA MTO) 
–  Andreas Olofsson (DARPA MTO) 
–  Prof. Barry Shoop (IEEE President) 

•  Special sessions on 
–  DARPA Graph Challenge 
–  Resilient systems 
–  Big Data 
–  GPU & FPGA Computing 

21st IEEE HPEC Conference 
September 12-14, 2017 (ieee-hpec.org) 

•  Sustains gov’t leadership position 
•  Keeps gov’t users ahead of the technology curve 
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GPU = Graphics Processing Unit 
FPGA = Field Programmable Gate Array 


