CHELSEA HARRIS

ZENTERA GRED

UC BERKELEY

supernovae: stellar explosions

- different explosion mechanisms
 - core-collapse, thermonuclear
 - because a star exploded:
 - + ejecta is \geq solar mass
 - ejecta speeds are ~10,000 km/s (approaching 10% light speed)

- light is from decay of radioactive material synthesized during explosion
 - as bright as a galaxy
 - last about a month

endpoints of stellar evolution

create & disperse heavy elements

SDO/AIA 335 2011-09-07 22:55:53 UT

energize galaxies

cosmological tools

" progenitor problem"

SDO/AIA 335 2011-09-07 22:55:53 UT

endpoints of stellar evolution

create & disperse heavy elements

energize galaxies

cosmological tools

SUPERNOVA for endine to theory look for indirect evidence of what caused explosion, compare to theory

circumstellar environments

auroras created by Sun's puny wind interacting with Earth's magnetic field and atmosphere

nebulae created from envelope ejection

ejecta (radioactive decay x-rays)

SHOCK | (excited Ha line)

circumstellar interaction

(illustrated by a supernova interacting with the *inter*-stellar medium)

- ejecta moving $\geq 100 \times$ faster than CSM, sweeps over millennia of evolution history in just years
- rare to see because needs dense CSM (e.g., a million times higher mass loss rate than the solar wind)
- because CSM can be from binary processes, there is a lot to be learned!

ejecta (radioactive decay x-rays)

shock (excited Ha line)

circumstellar interaction

(illustrated by a supernova interacting with the *inter*-stellar medium)

- impact of fast ejecta with slow surrounding gas drives a shock
- in shock region there are magnetic fields and (thus) relativistic electrons

✦

 \blacklozenge

- emits at many wavelengths:
 - X-ray (free-free, inverse compton, synchrotron, lines)
 - optical/uv (lines, thermal continuum)
 - infrared (if dust formed)
 - radio (synchrotron)

ejecta (radioactive decay x-rays)

shock (excited Ha line)

thesis goals

expand computational models beyond continuous, steady wind off progenitor surface

- short-duration interaction
- delayed interaction
- non-spherical interaction

predict non-thermal radiation signatures and optical line luminosities

odels dy e on on on tion e

HPC

- hydrodynamics (solve conservation equations)
 - moving mesh (Lagrangian)
 - 3D: Rayleigh-Taylor instability, mixing

HPC

- hydrodynamics (solve conservation equations)
 - moving mesh (Lagrangian)
 - 3D: Rayleigh-Taylor instability, mixing
- radiation transport •
 - ionization states
 - electron (level) states
 - photon transport (monte carlo)
- → multi-band light curves, spectra

confined circumstellar shell

C. Harris, P. Nugent & D. Kasen (2016)

1-10: need for mathematous innge

tool for interpretingobservation probability
heat mapobservation probability
probability of observing a
thin (nova) shell collision:

thank you!

... Krell (esp. for putting up with my inability to do paperwork) ... DC folks (for funding us) ... NREL (for a great practicum) ... fellows (for being cool)

... **Peter** (esp. for stopping in the Alps)