Probing Trillion Degree Matter

DOE CSGF Program Review 2016 Dragos Velicanu, MIT

In the beginning...

Trillion degree matter here

How to create trillion degree matter

 Accelerate lead nuclei to near the speed of light, and smash them together

Short animation of a collision

A Large Particle Accelerator

A Compact Particle Detector - CMS

- Surround collision point with different particle detectors
 - 4 Tesla solenoid
 - Tracker connect the dots,(75 million dots...)
 - p[±], e[±]...
 - Calorimeters measure charged (EM) and neutral energy

Collisions

A single 7 TeV p-p collision , ~ 20 MHz

A single 2.76 TeV Pb-Pb collision , up to 20 KHz

1+1 = 200?

 $E = mc^2$

200+200 = 30000

An instant of Quark Gluon Plasma (QGP)

- Initial volume of QGP ~ volume of Pb nucleus, O(10 fm³)
- Initial energy = final energy, which we can measure
 - Calculate density ~30 GeV/fm³
 - Simulations give temperature ~4 Trillion Kelvin (1M hotter than sun core)

Much denser than a neutron star

How to study this form of matter

- Can study correlations between final state particles in detector
 - Discovered hydrodynamic properties of the expanding quark gluon plasma, initial state anisotropies, challenged our fundamental understanding of relativistic hydro in progressively smaller systems
- But can we probe this plasma that lives 10⁻²³s and is the size of a lead nucleus?

Yes we can

- Sometimes pairs of very high energy back-toback quarks get created within the quark gluon plasma.
 - These are two probes that both lose energy traversing the QGP
- But quarks don't make it to the detector alone, they convert their high energy into a collimated spray of particles we call jets

An even rarer probe

- <u>Very rarely</u> you get back-to-back quark with a photon
- This is the golden probe because the photon doesn't lose energy
 - Now you know the initial energy of your other probe

Computational considerations

- Each collision produces ~10MB
 - Need to read out 10 MB every 50 ns
 - Hard to write ~1TB/s to disk, expensive to store so we "trigger", selectively throw away collisions, keep few % most interesting
 - Can study rare processes this way!
- ~1 PB of data after a month of running
 - Easy parrelization as each collision is independent of others – can use network of computers if you have efficient many-to-many read/write: LHC computing grid, hadoop

Fresh data at double the energy in 2015

- Last year the Large Hadron Collider turned on at double the energy and higher collision rate
 - Went from having O(1K) collisions with a photon-quark pair to O(150K) of these collisions
 - Now doing precision studies of the energy loss properties of these probes
- We will for the first time have enough data to use these rareclean probes

Awknowledgements

 I'd like to thank DOE CSGF for giving me the opportunity to gain a deeper understanding of computational tools and methods to be able to work on relativistic hydro simulations at LBNL

