
Discretization by Machine Learning

The Finite-Element with Discontiguous Support Method

Andrew T. Till

Nicholas C. Metropolis Postdoc Fellow
Computational Physics and Methods (CCS-2)

Los Alamos National Laboratory
till@lanl.gov

July 27, 2016
More at http:/goo.gl/HMWtu

LA-UR-16-25320

mailto:till@lanl.gov
http:/goo.gl/HMWtu


Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

How would you represent this image efficiently?
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

How would you represent this data efficiently?
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Partitioning in energy requires many unknowns to resolve the resonances
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Partitioning in energy requires many unknowns to resolve the resonances
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Partitioning in the dependent variable requires fewer unknowns, but results
in a non-contiguous partitioning in energy
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Non-contiguous discretizations can be advantageous
This talk will be on the Finite-Element with Discontiguous Support (FEDS) method

FEDS

Preserves fine-scale features with few
unknowns
Uses machine learning to determine
non-contiguous grid
Applied to nuclear reactor analysis

Energy axis (arb.)

Full energy domain
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Let us compress this image using non-contiguous unknowns
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Traditional discretization schemes correspond to smearing / averaging the
image
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

FEDS corresponds to clustering the image, which we do here by clustering
like colors
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Clustering preserves underlying physical structure while averaging does not

2 colors 2× 2 pixels
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Clustering preserves underlying physical structure while averaging does not

8 colors 32× 32 pixels
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Clustering requires substantially less data when only the colors need to be stored,
not their locations

Clustering
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Nuclear reactor analysis involves solving the six-dimensional Boltzmann transport equation

Unknown is ψ(r,Ω,E )

r is space (3D: x , y , z), Ω is neutron direction (2D), E is neutron kinetic energy (1D)

Spatial mesh Directional mesh
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Nuclear reactor analysis involves solving the six-dimensional Boltzmann transport equation

Unknown is ψ(r,Ω,E )

r is space (3D: x , y , z), Ω is neutron direction (2D), E is neutron kinetic energy (1D)

Fast neutrons’ flux Slow neutrons’ flux
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Consider an example advection-reaction problem

Unknown solution is ψ(x, t,E ) and satisfies[
∂
∂t +∇ · v(E ) + σ(x, t,E )

]
ψ(x, t,E ) = q(x, t,E )

Has fine-scale dependence on variable E
(More generally, E could be anything that has microstructure)
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Consider an example advection-reaction problem

Unknown solution is ψ(x, t,E ) and satisfies[
∂
∂t +∇ · v(E ) + σ(x, t,E )

]
ψ(x, t,E ) = q(x, t,E )

Has fine-scale dependence on variable E
(More generally, E could be anything that has microstructure)

Fine structure in coefficients

σ(E ) vs. E
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Our method is the Finite-Element with Discontiguous Support (FEDS) method
FEDS is a Petrov-Galerkin finite element method

This is our only approximation

ψexact(x, t,E ) ' ψFEDS(x, t,E ) ≡
∑
k

bk(x,E )Ψk(x, t),

Eg+1/2 Eg−1/2

0

1

Energy (log) →

w
g
,1

(E
)
→

Our weight functions (left)

wk(E ) =

{
1 if E ∈ Ek ,
0 otherwise,

Our basis functions

bk(x ∈ Vi ,E ) =

{
Ci,k fi (E ) E ∈ Ek ,
0 otherwise,

where the fi (E ) have fine-scale features and Ci,k
normalizes
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Apply FEDS to our example advection-reaction problem

We seek a weak form of the equations in energy

1 Multiply by weight function and integrate over all E∫∞
0

dE wj(E )
{[

∂
∂t +∇ · v(E ) + σ(x, t,E )

]
ψ(x, t,E )− q(x, t,E )

}
= 0

2 Expand ψ into basis function representation (our only approximation) and group terms
3 Use orthonormality of weight and basis functions∫∞

0
dE wj(E )bk(x,E) = δj,k ∀x

4 Get weak form[
∂
∂t +∇ · vi,k + σk(x, t)

]
Ψk(x, t) = qk(x, t),

Till (LA-UR-16-25320) FEDS (cf. goo.gl/HMWtu) 17 / 21

goo.gl/HMWtu


Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

Apply FEDS to our example advection-reaction problem

We seek a weak form of the equations in energy

1 Multiply by weight function and integrate over all E∫∞
0

dE wj(E )
{[

∂
∂t +∇ · v(E ) + σ(x, t,E )

]
ψ(x, t,E )− q(x, t,E )

}
= 0

2 Expand ψ into basis function representation (our only approximation) and group terms
3 Use orthonormality of weight and basis functions∫∞

0
dE wj(E )bk(x,E) = δj,k ∀x

4 Get weak form[
∂
∂t +∇ · vi,k + σk(x, t)

]
Ψk(x, t) = qk(x, t),

with coefficients

vi,k = Ci,k

∫
Ek

dE v(E )fi (E ), x ∈ Vi ,

σk(x, t) = Ci,k

∫
Ek

dE σ(x, t,E )fi (E ), x ∈ Vi ,

qk(x, t) =
∫
Ek

dE qk(x, t).

Solve for Ψk(x, t), which determines ψ(x, t,E ) =
∑
k

bk(x,E )Ψk(x, t).
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Our finite element method has two free parameters

We must choose the fi (E ) (shape of basis functions)

We must choose the Ek (support of weight/basis functions)
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Reasonable first approximation is fi (E ) = 1
Using an analytic model or subproblem to compute fi (E ) has been found to decrease solution error
constant, but not rate of convergence

We must choose the Ek (support of weight/basis functions)
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Should have the property that:
If E1 and E2 are both in the same Ek ,
then ψ(x, t,E1) and ψ(x, t,E2) should have similar behavior in (x, t)
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Our finite element method has two free parameters

We must choose the fi (E ) (shape of basis functions)

Reasonable first approximation is fi (E ) = 1
Using an analytic model or subproblem to compute fi (E ) has been found to decrease solution error
constant, but not rate of convergence

We must choose the Ek (support of weight/basis functions)

Should have the property that:
If E1 and E2 are both in the same Ek ,
then ψ(x, t,E1) and ψ(x, t,E2) should have similar behavior in (x, t) (The ψ may have different
behavior if E1 and E2 are in different Ek)
This requires us to know how the solution behaves on the fine scale
(if only approximately)
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Introduction Compressing Pictures Nuclear Reactor Analysis A non-Standard Finite Element Method Results

We use machine learning to determine the Ek
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Our process

We assume we have been given solution-like spectra: si (En) ' ψ(xi , ti ,En) for representative
locations, i , and on a fine grid, n
We use hierarchical agglomeration to combine into the same Ek those En whose si (En) behave
similarly ∀i (above, right)
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We find FEDS to be convergent and able to achieve low errors with modest unknown
counts

Previous method
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FEDS

Often first-order convergent
Uses a non-standard finite element method whose elements have discontiguous support
Uses machine learning to calculate this support
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