Discretization by Machine Learning

The Finite-Element with Discontiguous Support Method

Andrew T. Till

Nicholas C. Metropolis Postdoc Fellow Computational Physics and Methods (CCS-2) Los Alamos National Laboratory till@lanl.gov

> July 27, 2016 More at http:/goo.gl/HMWtu LA-UR-16-25320

 Introduction
 Compressing Pictures
 Nuclear Reactor Analys

 •00000
 000000
 00

A non-Standard Finite Element Method

Results

How would you represent this image efficiently?

DOE

Introduction	Compressing Pictures		A non-Standard Finite Element Method	
00000	000000	00	0000	
How would y	ou represent this	data efficiently?		

DOE CSGE

Partitioning in energy requires many unknowns to resolve the resonances

DOE CSGF

 Introduction
 Compressing Pictures
 Nuclear Reactor Analysis
 A non-Standard Finite Element Method
 Results

 00000
 00000
 0000
 0000
 0000
 0000

Partitioning in the dependent variable requires fewer unknowns, but results in a non-contiguous partitioning in energy

DOE CSGF

 Introduction
 Compressing Pictures
 Nuclear Reactor Analysis
 A non-Standard Finite Element Method
 Results

 000000
 00
 00
 00
 00
 00

Partitioning in the dependent variable requires fewer unknowns, but results in a non-contiguous partitioning in energy

DOE

 Introduction
 Compressing Pictures
 Nuclear Reactor Analysis
 A non-Standard Finite Element Method
 Results

 00000
 00
 00
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

in a non-contiguous partitioning in energy

DOE CSGF

 Introduction
 Compressing Pictures
 Nuclear Reactor Analysis
 A non-Standard Finite Element Method
 Results

 00000
 00
 00
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

in a non-contiguous partitioning in energy

DOE

Introduction

Compressing Pictures

Nuclear Reactor Analysis

A non-Standard Finite Element Method

Results

Non-contiguous discretizations can be advantageous This talk will be on the Finite-Element with Discontiguous Support (FEDS) method

FEDS

- Preserves fine-scale features with few unknowns
- Uses machine learning to determine non-contiguous grid
- Applied to nuclear reactor analysis

Full energy domain

Energy axis (arb.)

 Introduction
 Compressing Pictures
 Nuclear Reactor Analysis
 A non-Standard Finite Element Method

 00000
 000000
 00
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

This talk will be on the Finite-Element with Discontiguous Support (FEDS) method

 Introduction
 Compressing Pictures
 Nuclear Reactor Analysis
 A non-Standard Finite Element Method

 00000
 000000
 00
 00000

 Non-Standard Finite Element Method
 00000
 00000

Non-contiguous discretizations can be advantageous This talk will be on the Finite-Element with Discontiguous Support (FEDS) method

Energy axis (arb.)

 Introduction
 Compressing Pictures
 Nuclear Reactor Analysis
 A non-Standard Finite Element Method

 00000
 000000
 00
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

This talk will be on the Finite-Element with Discontiguous Support (FEDS) method

Energy axis (arb.)

	Compressing Pictures		A non-Standard Finite Element Method
	00000		
Let us co	ompress this image	e using non-contig	guous unknowns

Till (LA-UR-16-2532

Till (LA-UR-16-25320)

Introduction 000000	Compressing Pictures 000●00	Nuclear Reactor Analysis OO	A non-Standard Finite Element Method	Results 00
Clustering p	reserves underlying	physical structure wh	ile averaging does not	

2 colors

11 / 21

(cf. goo.gl/HMWtu)

 $2\times 2~\text{pixels}$

Till (LA-UR-16-25320)

Introduction 000000	Compressing Pictures	Nuclear Reactor Analysis OO	A non-Standard Finite Element Method	Result 00
Clustering p	preserves underlying	physical structure w	hile averaging does not	

8 colors

Till (LA-UR-16-25320)

DOE CSGF

 32×32 pixels

	Compressing Pictures	Nuclear Reactor Analysis	A non-Standard Finite Element Method	
		00		
Consider an ex	ample advection-rea	ction problem		

• Unknown solution is $\psi(\mathbf{x}, t, E)$ and satisfies

$$\left[\frac{\partial}{\partial t} + \nabla \cdot \mathbf{v}(E) + \sigma(\mathbf{x}, t, E)\right] \psi(\mathbf{x}, t, E) = q(\mathbf{x}, t, E)$$

• Has fine-scale dependence on variable *E*

(More generally, E could be anything that has microstructure)

- Unknown solution is $\psi(\mathbf{x}, t, E)$ and satisfies
 - $\left[\frac{\partial}{\partial t} + \nabla \cdot \mathbf{v}(E) + \sigma(\mathbf{x}, t, E)\right] \psi(\mathbf{x}, t, E) = q(\mathbf{x}, t, E)$
- Has fine-scale dependence on variable *E* (More generally, *E* could be anything that has microstructure)

DOE CSGF

This is our *only* approximation

$$\psi_{\mathsf{exact}}(\mathsf{x},t,E) \simeq \psi_{\mathsf{FEDS}}(\mathsf{x},t,E) \equiv \sum_{k} b_k(\mathsf{x},E) \Psi_k(\mathsf{x},t),$$

Our weight functions (left) $w_k(E) = \begin{cases} 1 & \text{if } E \in \mathbb{E}_k, \\ 0 & \text{otherwise.} \end{cases}$ Our basis functions

$$p_k(\mathbf{x} \in V_i, E) = \left\{egin{array}{cc} C_{i,k} \ f_i(E) & E \in \mathbb{E}_k, \ 0 & ext{otherwise}, \end{array}
ight.$$

where the $f_i(E)$ have fine-scale features and $C_{i,k}$ normalizes

DUE

Introduction 000000	Compressing Pictures	Nuclear Reactor Analysis OO	A non-Standard Finite Element Method ○●○○	Results 00
Apply FEDS t	o our example advec	tion-reaction proble	m	
We seek a weak	form of the equations in	n energy		
Multiply by	weight function and int	tegrate over all <i>E</i>		
$\int_0^\infty \mathrm{d} E w_j(I)$	$\Xi \left(\left[\frac{\partial}{\partial t} + \nabla \cdot \mathbf{v}(E) + \sigma \right] \right)$	$(\mathbf{x}, t, E)] \psi(\mathbf{x}, t, E) - q \psi(\mathbf{x}, t, E)$	$(\mathbf{x}, t, E) \} = 0$	

- **2** Expand ψ into basis function representation (our only approximation) and group terms
- O Use orthonormality of weight and basis functions

$$\int_0^\infty \mathrm{d} E \, w_j(E) b_k(\mathsf{x},\mathsf{E}) = \delta_{j,k} \,\, orall \mathbf{x}$$

Get weak form

 $\left[rac{\partial}{\partial t} +
abla \cdot \mathbf{v}_{i,k} + \sigma_k(\mathbf{x},t)
ight] \Psi_k(\mathbf{x},t) = q_k(\mathbf{x},t)$,

00000	on Compressing Pictures Nuclear Reactor Analysis O 000000 00	A non-Standard Finite Element Method O●OO	00
App	y FEDS to our example advection-reaction problen	n .	
We	eek a weak form of the equations in energy		
	Multiply by weight function and integrate over all E		
	$\int_{0}^{\infty} \mathrm{d}E w_{j}(E) \left\{ \left[\frac{\partial}{\partial t} + \nabla \cdot \mathbf{v}(E) + \sigma(\mathbf{x}, t, E) \right] \psi(\mathbf{x}, t, E) - q(\mathbf{x}, t, E) \right\}$	$(t, t, E) \big\} = 0$	
2	Expand ψ into basis function representation (our only approx	eximation) and group terms	
3	Use orthonormality of weight and basis functions		
	$\int_0^\infty \mathrm{d} E w_j(E) b_k(\mathbf{x}, \mathbf{E}) = \delta_{j,k} orall \mathbf{x}$		
٩	Get weak form		
	$\left[rac{\partial}{\partial t}+ abla\cdot \mathbf{v}_{i,k}+\sigma_k(\mathbf{x},t) ight]\Psi_k(\mathbf{x},t)=q_k(\mathbf{x},t)$,		
	with coefficients		
	$\mathbf{v}_{i,k} = C_{i,k} \int_{\mathbb{R}_k} \mathrm{d} E \mathbf{v}(E) f_i(E), \mathbf{x} \in V_i,$		
	$\sigma_k(\mathbf{x},t) = \overline{C_{i,k}} \int_{\mathbb{E}_k} \mathrm{d} E \sigma(\mathbf{x},t,E) f_i(E), \mathbf{x} \in V_i,$		
	$q_k(\mathbf{x},t) = \int_{\mathbb{E}_k} \mathrm{d} E \; q_k(\mathbf{x},t).$		
Solv	e for $\Psi_k(\mathbf{x}, t)$, which determines $\psi(\mathbf{x}, t, E) = \sum_k b_k(\mathbf{x}, E) \Psi_k$	(x , <i>t</i>).	

Introduction 000000	Compressing Pictures	Nuclear Reactor Analysis 00	A non-Standard Finite Element Method ○○●○	Results 00
Our finite e	lement method has	two free parameters		

We must choose the $f_i(E)$ (shape of basis functions)

We must choose the \mathbb{E}_k (support of weight/basis functions)

	Compressing Pictures		A non-Standard Finite Element Method	
			0000	
Our finite ele	ement method has	two free parameters		

We must choose the $f_i(E)$ (shape of basis functions)

- Reasonable first approximation is $f_i(E) = 1$
- Using an analytic model or subproblem to compute $f_i(E)$ has been found to decrease solution error constant, but not rate of convergence

We must choose the \mathbb{E}_k (support of weight/basis functions)

Introduction 000000	Compressing Pictures	Nuclear Reactor Analysis	A non-Standard Finite Element Method	Results 00	
Our finite element method has two free parameters					
We must choose	the $f_i(E)$ (shape of basi	is functions)			

- Reasonable first approximation is $f_i(E) = 1$
- Using an analytic model or subproblem to compute $f_i(E)$ has been found to decrease solution error constant, but not rate of convergence

We must choose the \mathbb{E}_k (support of weight/basis functions)

Should have the property that:
 If E₁ and E₂ are both in the same E_k,
 then ψ(x, t, E₁) and ψ(x, t, E₂) should have similar behavior in (x, t)

Our finite don	agent mathad has to	vo froe paramotors		
000000	000000	00	0000	
Introduction	Compressing Pictures	Nuclear Reactor Analysis	A non-Standard Finite Element Method	Results

We must choose the $f_i(E)$ (shape of basis functions)

- Reasonable first approximation is $f_i(E) = 1$
- Using an analytic model or subproblem to compute $f_i(E)$ has been found to decrease solution error constant, but not rate of convergence

We must choose the \mathbb{E}_k (support of weight/basis functions)

- Should have the property that:
 - If E_1 and E_2 are both in the same \mathbb{E}_k , then $e^{i(x_1 + \sum_{j=1}^{n} e^{i(x_1 + \sum_{j=1}^{n} e^{i(x_2 + \sum_{j=1}^{n} e^{i(x_1 + \sum_{j=1}^{n} e^{i(x_2 +$
 - then $\psi(\mathbf{x}, t, E_1)$ and $\psi(\mathbf{x}, t, E_2)$ should have similar behavior in (\mathbf{x}, t) (The ψ may have different behavior if E_1 and E_2 are in different \mathbb{E}_k)
 - This requires us to know how the solution behaves on the fine scale (if only approximately)

18 / 21

(cf. goo.gl/HMWtu

19 / 21

(cf. goo.gl/HMWtu)

Our process

- We assume we have been given solution-like spectra: $s_i(E_n) \simeq \psi(\mathbf{x}_i, t_i, E_n)$ for representative locations, *i*, and on a fine grid, *n*
- We use hierarchical agglomeration to combine into the same 𝔼_k those 𝔅_n whose s_i(𝔅_n) behave similarly ∀i (above, right)

DOE CSGF

10⁻¹

 10^{1}

Energy DOF in the RRR

FEDS

 10^{-1}

100

Often first-order convergent

 $O(k^{-2})$

 10^{1}

- Uses a non-standard finite element method whose elements have discontiguous support
- Uses machine learning to calculate this support

Energy DOF in the RRR

 10^{2}

 10^{2}

Thank You!

This work was funded by the Department of Energy Computational Science Graduate Fellowship program (DOE CSGF - grant number DE-FG02-97ER25308), which provides strong support to its fellows and their professional development. LA-UR-16-25320

