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ISSUES & EVENTS

Cancer, brain research, and supercomputing

By contributing to health
research, the Department of
Energy could transform its
approach to designing the
next generation of high-
performance computer:

hen computers capable of working

at the exascale level (10" floating-

point calculations per second) come
on line, they will be brought to bear on
figuring out how another, quite different
computer, the human brain, works. With
that goal in mind, Energy secretary
Ernest Moniz and National Institutes of
Health director Francis Collins are ex
ploring how to bring the Department of
Energy, which houses the nation’s lead-
ing supercomputers, into the presiden-
tial initiative known as BRAIN (Brain
Research through Advancing Innovative
Neurotechnologies; see PHYSICS TODAY,
December 2013, page 20)

T'he brain is just one area of biomed-
ical research that could benefit from the
computational and physical sciences ex-
pertise at DOE and its national laborato-
ries. In December Moniz asked his Sec-
retary of Energy Advisory Board (SEAB)
to look for ways to increase DOE’s con-
tribution to biomedical sciences. A SEAB
task force, cochaired by former NIH and
National Cancer Institute (NCI) director
Harold Varmus and former DOE under-
secretary Steven Koonin, will report to
him in September.

The BRAIN Initiative will require ad-
vances across several scientific fields
“We need better ways of detecting and
recording neural signals,” says Roderic
Pettigrew, director of NIH’s National
Institute of Biomedical Imaging and
Bioengineering. “Then we need analyti-
cal tools to interpret those signals. We
need ways of deciphering meaningful
signals from noise, an area DOE scien-
tists are accustomed to dealing with.”

Another area of focus is the model-
ing of what goes on in the brain,
solved in three dimensions and in
time. “People often don't think of the
time domain of medical data,” notes
Pettigrew, the designated liaison to DO
“But life is temporal, and biological
dimensions change in the time domain.
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A HIGHLY AUTOMATED, ROBOTIC X-RAY CRYSTALLOGRAPHY SYSTEM at SLAC's Linac
Coherent Light Source x-ray laser. The metal drum at the lower left contains liquid nitrogen
for cooling crystallized samples. This setup was used to explore the molecular machinery
involved in brain signaling in atomic-scale detail

Proteins fold and unfold, protein r
ceptors go from inactive to active state

In October representatives from the
two agencies held a jointly sponsored
BRAIN workshop at Argonne National
Laboratory that coincided with a major
neuroscience conference in nearby
Chicago. Reports from those discussion
were delivered to Moniz and Collins but
haven't been made public

“There is a lot of opportunity and a
lot of need in the neuroscience comm
nity to benefit from the tools and the
organization of the labs to do this kind
of big project,” Moniz told reporters in
November, days before issuing his
charge to SEAB.

Dimitri Kusnezov, chief scientist for
DOE’s National Nuclear Security Ad-
ministration, is involved in discussi
with NIH. “The question we're asking
ourselves is, Are there real wins in pus|
ing diagnostics—for example, in a multi-
mode analysis—or is the community
geared to move forward at the same pace
anyway?” he says. “Can we accelerate
things in a significant way or not? We
don't have the answer yet.”

Biomedical research has long bene-
fited from DOE assets. Life-sciences
researchers represent the single largest

sector of users (about 40%) at the DOE
national laboratories’ x-ray light sources,
half of whom are supported by NIH
And initial ge -sequencing work at
Los Alamos National Laboratory begat
the NIH-led Huma:

The nanoscale-science research cer
ters operated by tt abs and
ot groups have bee p g sen-
sors that can r noparticles. “It’s
conceivable that nanoparticles with cer-
tain characteristics can be embedded ina
living system like a brain,” says Steve
Binkley, associate director for advanced
scientific computing research in DOE’s
Office of Science. “And one could then
also conceive of read I
ing out of them. The holy grail is to get
real-time mapping of signals that exist in
neurons as a function of time to certain
stimuli,” he says. Such mapping has
been done with mice, but scientists used
invasive probes not suitable for research
on humans

Imaging is another DOE stre
will be useful to BRAIN, Binkley says.

The labs have expertise using UV, x ray

IR, coherent light sources, and lasers for
imaging. “Its often not obvious at the
outset how one puts all those things to-

gether to image a certain type of thing

Cancer, Brain and
Supercomputing
Three White House Initiatives
* National Strategic Computing

* Precision Medicine

 BRAIN
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The Cell Cycle

* Most adult cells, without growth stimulus,
will go into the G, phase of the cell cycle

* However, when a growth factor binds to its
receptor on the cell membrane, a cascade
starts and the cell prepares to enter G,




Growth stimulus

 Growth factors
— Epidermal Growth Factor (EGF)
— Platelet-Derived Growth Factor (PDGF)

* Binds to Receptors Protein Tyrosine Kinase
(RPTK)

membrane

ACTIVE ACTIVE



Preparing the cascade

* Grb2 (adaptor protein) binds to
phosphorylated tyrosine

— Recruits SoS (Ras activating protein)
* SoS exchanges GDP for GTP
— Activates Ras
* Ras must be membrane bound to be active
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The ERK Cascade
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Joint Design of Advanced
Computing Solutions for Cancer

DOE-NCI partnership to advance
cancer research and high
performance computing in the U.S.

Computing NCI

driving cancer .
advances National

Cancer
DOE Institute
December 11, 2015 Department ey driving

of Energy computing
advances

Presented to:
Secretary Moniz and Director Lowy

SR, U.S. DEPARTMENT OF

& ENERGY | [II)) NATIONAL CANCER INSTITUTE

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-678642-DRAFT.



The NCI-DOE partnership will extend the frontiers
of precision oncology (Three Pilots)

RAS pathway

Cancer Biology
— Molecular Scale Modeling of RAS Pathways

— Unsupervised Learning and Mechanistic models
— Mechanism understanding and Drug Targets

Pre-clinical Models

— Cellular Scale PDX and Cell Lines
— ML, Experimental Design, Hybrid Models 5 Implanted mto a mouse
— Prediction of Drug Response

Cancer Surveillance
— Population Scale Analysis

— Natural Languge and Machine Learning
— Agent Based Modeling of Cancer PateintTrajectories

@‘"’“«»ﬁ U.S. DEPARTMENT OF

DENERGY [I) NATIONAL CANCER INSTITUTE
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RAS Protein Interaction Network
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Developing new therapeutic approaches to target
RAS-driven cancer

6% of cancers have mutated RQ

~1M deaths/year

Current therapies ineffective

Kagainst RAS-driven cancer/

’ Molecular Dynamics

Simulation
Modeling

RAS biology
ID targets
New inhibitors
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Pilot 2: RAS proteins in membranes

RAS activation
experiments at NCI/FNL

X-ray/neutron
scattering

CryoEM imaging

Multi-modal experimental
data, image reconstruction,
analytics

Protein structure

databases

GENERGY m NATIONAL CANCER INSTITUTE
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simulation codes
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>50% of Patients do not respond to
chemotherapy for some tumors

DESPERATELY SEEKING SURVIVAL

Patients generally respond well to targeted therapies (left), which are directed at
specific mutations in a cancer, but only for a short time. Checkpoint immunotherapies
(right) do not help as many people, but those they do help tend to live longer.
Oncologists are trying to get the best out of both strategies by combining the drugs.

- Targeted therapy = |mmunotherapy
Standard therapy Standard therapy
©
=
c
e |
n
0 1 2 3 0 1 2 3

Years after diagnosis
onature



Extremely high genetic diversity in a single tumor

points to prevalence of non-Darwinian cell evolution

e U.S. DEPARTMENT OF
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Fig. 22 Map of the mutation dones of HCC-15. A mutation clone is the aggregate of all samples carrying that mutation (main text). Hence, subdones (with in-
creasingly darker hues) are nested within their parent dones. (A) Each star symbol indicates a singleton cione, represented by one sample. The donal boundaries are
delineated by the genotypes of all 286 samples. Many samples straddle two dlones (induding A3, B17, B1S, B20, (78, D6, D3, and Z1). In this "sectoring”™ pattern of
growth, " grew outward from & and, subsequently, §"'s (-1, —2) grew outward from §. Note that tumors grew in three-dimensional (3D) space but the observations
made were on a two-dimensional (2D) plane. This was apparent in the "northeast” direction, along which both the a and § dones were extending from the interior
toward the periphery. it appears that a grew above or below B in their expansion toward the periphery. (8) The § lineage dones are pulled out to display the
overlaying pattern of mutation dones. The clonal map was akso used to compute the mutation frequency spectrum, £, which s the number of sites where the
frequency of the mutation was between (i — 1)23 and ¥23 from the 286 samples. We kept the number of frequency bins at 23 because the mutations discovered
remained based on the initial 23 samples. The spectrum, as given inthe text, 5 [£,=26,7, 1, 1,0, 0, .. ] for i = 1-22 (Materiak and Methods, section 9 and Dataset S8).
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Estimated Cell Lineages

STOC AON TT SVNd ‘|e 19 8ul

Fig. 1. Sampling scheme and clonal genealogy of HCC-15. (A) Samples were taken from a 1-mm-thick slice cut through the middle of a HCC tumor, 3.5 am in
diameter. Of the 286 samples, 23 were subjected to whole-exome sequencing (red numbers) and the rest (black numbers) were used in genotyping for mutations
discovered in sequencing (Materials and Methods, sections 1-5). The numbers correspond with those of Fig. 2. Across the sequenced samples, the average read depth
was 74.4x (Dataset S1). On average, these samples contained 85% cancerous cells estimated by ABSOLUTE (52). This level of purity is consistent with previous reports
regarding hepatic tumor samples (12), especially when the sample volumes are small (~20,000 cells). Pathology reports, when available for the matched HCC samples,
generally agreed with the purity estimates. (8) All 35 polymorphic nonsynonymous mutations in the sequenced samples are shown in the heat map, which depicts
the observed frequencies (from 0 in white to 1 in yellow) with mutation names at the top of the map. Each row presents the mutations in a sequenced sample. Far
Right shows six fixed mutations that are potential drivers. Left shows the genealogy of the 24 samples. Only two dones, indicated by blue bars, are represented by
more than one sample. (C) The genealogy of clones arranged to reflect their spatial relationships. The ancestral clone, €, is in the middle and the descendant clones
radiate outward. These clones are arranged on six rings with each outer ring having one more nonsynonymous mutation (indicated) than its interior neighbor. Each
star symbol represents a singleton clone. (D) The expanded genealogy that includes all 286 samples. The blue stars designate the sequenced samples.



Significance

When the data were analyzed by modern population genetic
theory, we estimated more than 100 million coding region
mutations in this unexceptional tumor.

The extreme genetic diversity implies evolution under the non-
Darwinian mode.

In contrast, under the prevailing view of Darwinian selection, the
genetic diversity would be orders of magnitude lower.

Because genetic diversity accrues rapidly, a high probability of
drug resistance should be heeded, even in the treatment of
microscopic tumors.
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The NCI ALMANAC: Testing All Pairwise
Combinations of Approved Cancer Drugs

 The NCI ALMANAC (A Large Matrix of AntiNeoplastic Agent
Combinations)

* Currently just over 100 small molecule oncology drugs are FDA-
approved.

* Test all possible pairwise combinations: “5000 drug pairs

* Test each drug pair in each of the cell lines in the NCI-60 panel:
— ~300,000 experiments
— ~4.3 million wells

Screen run at Frederick National Labs & 2 contract locations

Manuscript In Preparation
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NCI-60 Combination Data
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had a good ComboScore in the corresponding cell line.
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Patient Derived Xenograft Models

Patient-derived xenografts (PDX) &

conditionally reprogrammed cell lines A > 0
. I\ Create reprogrammed
\ ‘ cell lines
A > d
Tumorigenesis
: ‘ N =
Transplantation
into NSG mice
]
[ > (
N W
Tumor/patient
heterogeneity

Molecularly characterize,
treat/screen mice bearing
transplants & cells with
relevant drugs.

“Pre-clinical clinical trials”

Nature Rev. Clin. Oncol. 11: 649-662,2014.
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Pilot 1: Predictive Models for Pre-Clinical Screening
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Deep Learning Formulation

O(107) instances x O(107) features

multiple cell lines new cell line
drug propertles JeTo! s data matrices I:]

al, chemical & structural) (GE, CNV, Mut)

ST {

multiple T GRIND/ drug
drugs |target] ... |1&2D |Vsurf |GRIND2 Sponses

new I TN (I T T"TEEE N osAr

drug Integrative QSAR (new drug.

new cell line)

Personalized

Drugs + Cell Lines =DNN =IC50

* Virtual screening new drugs on existing cell lines and PDX models
* Prediction of drug IC50 on new tumor/cell lines
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Hybrid Models in Cancer

Genome

Inform | Mechanistic biological | s TInsight

models +/-Predictive performance

Transcriptome

™

Cancer cell

Hybrid models

Methylation Analyze o

7

L

Machine learning |—> TPredictive performance | 7 Predictive performance
+/-Insight T Insight

/)N

Proteome

Figure 1. Intwo DREAM challenges, high throughput data characterizing cancer cells are used to build predictive models. Mechanistic models provide
insight into the underlying biology, but do not take full advantage of the information within the data to achieve high performance. Machine learning methods
are associative and extract maximum predictive value from the data, but do not always provide insight about mechanism. The future may bring hybrid
models that combine the best of both approaches.

Predicting Cancer Drug Response: Advancing the DREAM

Russ B. Altman

Summary: The DREAM challenge is a community effort to assess current capabilities in systems biology. Two
recent challenges focus on cancer cell drug sensitivity and drug synergism, and highlight strengths and weaknesses
of current approaches. Cancer Discov; 5(3); 237-8. ©2015 AACR.



Cancer Registries
Surveillance, Epidemology and End Results

Cancer registries cover the majority of populations in developed
regions—but almost none in emerging economies.

U.S. and Canada Western Europe

1000 94
4%
ok Southeast Asia
% %
= 380

South America Australia

6ENERGY M) NATIONAL CANCER INSTITUTE



Figure 1. Trends in Average Survival from Cancer Diagnosis in the United States and Ten European Countries, 1983-99
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Figure 2. Trends in Average Cancer Spending In the United States and Ten European Countries, 1983-99
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SEERs Database All Cancer Summary

> At a Glance

Estimated New
Cases in 2016 1,685,210

% of All New
Cancer Cases 100.0%

Estimated
Deaths in 2016 595,690

% of All -I 000%

Cancer Deaths

600

FeN
o
o

NUMBER PER
100,000 PERSONS

0

- New Cases Percent Surviving
™ 5 Years
~ \

66.9%

200 1
Deaths

2006-2012

T T T T T T Y

1992 1995 1998 2001 2004 2007 2010 2013

YEAR

Number of New Cases and Deaths per 100,000: The number of new cases of cancer of any site was 448.7 per
100,000 men and women per year. The number of deaths was 168.5 per 100,000 men and women per year. These
rates are age-adjusted and based on 2009-2013 cases and deaths.

Lifetime Risk of Developing Cancer: Approximately 39.6 percent of men and women will be diagnosed with cancer
of any site at some point during their lifetime, based on 2010-2012 data.

Prevalence of This Cancer: In 2013, there were an estimated 14,140,254 people living with cancer of any site in the

United States.
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Cancer Patient Surveillance and Information
Integration
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Treatment Effectiveness Treatment Patient Outcomes
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Future diagnostics T
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Pilot 3: Population Information Integration,

Analysis and Modeling
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Emerging NSCi Public Private Partnership for

Computing Precision Medicine
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Integration of Simulation,
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Semi-supervised
learning, scalable data
analysis and agent
based simulations on
population scale data
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The challenge of understanding the brain
requires extraordinary advances in neuroscience...

... along with }ws§-disciui' bining

nhysics, computation,*)gray science, ar science
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U.S. President Barack Obama walks off stage
after announcing his administration's BRAIN
(Brain Research through Advancing Innovative
Neurotechnologies) initiative at the White
House in Washington, April 2, 2013.
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The Big Picture Goal

 The challenge is to map the circuits of the brain,
measure the fluctuating patterns of electrical and
chemical activity flowing within those circuits,
and understand how their interplay creates our
unique cognitive and behavioral capabilities.

 We should pursue this goal simultaneously in
humans and in simpler nervous systems in which
we can learn important lessons far more quickly.

But our ultimate goal is to understand our own
brains.



DENTATE GYRUS

POSSIBLE LONG-TERM OUTCOMES

The BRAIN Initiative has the
potential to do for neuroscience what
the Human Genome Project did for
genomics by supporting the
development and application of
innovative technologies that can
create a dynamic understanding of
brain function. It aims to help
researchers uncover the mysteries of
brain disorders, such as Alzheimer's
and Parkinson's diseases,
depression, Post-Traumatic Stress
Disorder (PTSD), and traumatic
brain injury (TBI).






Goals of the BRAIN 2025

Discovering diversity: cell types

Maps at multiple scales: connectome
Brain in action: dynamic activity
Demonstrating causality: link to behavior
ldentifying fundamental principles
Advancing human neuroscience

BRAIN to brain: integration and translation



Overall Planning Document
(15 academic authors, NIH, NSF, DARPA, FDA)

BRAIN 2025

A SCIENTIFIC VISION

Brain Research through Advancing Innovative
Neurotechnologies (BRAIN) Working Group
Report to the Advisory Committee to the
Director, NIH

June 5, 2014 m) National Institutes of Health
Rening Discovery to Health

Vision and Philosophy

Priority Research Areas

Implementation goals,
deliverables, timelines
and Costs

6 workshops
~100 Participants

computer scientists?
Mathematicians?



Proposed BRAIN Initiative 12 Year Budget

$500M
$400M —  Total
$300M - NUroscience
- Neurotechnology
$200M
——— |nfrastructure
$100M
0
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Figure caption. Proposed 12-year budget for the BRAIN Initiative. Collaborative technology
development is emphasized through FY2019, while discovery-driven science receives
priority beginning in FY2020. ‘Infrastructure’ is for facilities and capabilities that will benefit
researchers across the entire nation, with emphasis on data sharing resources, training in
the use of new technologies and quantitative methods, and possible regional
instrumentation centers during the last half of the BRAIN Initiative.



BRAIN initiative Awards
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FY2016 Investments
FY2015 ~$200M

* NIH SYEEY
 DARPA  $S95M
* NSF S72M
* |ARPA Y
* FDA SYM

Building off of 5100 million in
commitments announced last year
at NIH, NSF and DARPA, the
BRAIN Initiative is growing to five
participating federal agencies with
the addition of FDA and IARPA.

DOE has a proposed FY17 role for BES, BER and ASCR



Darpa Program Elements

Electrical Prescriptions (ElectRX)
Hand Proprioception and Touch Interfaces (HAPTIX)
Neural Engineering Systems Design (NESD)

Neuro Function, Activity, Structure and Technology (Neuro-
FAST)

Reliable Neural-Interface Technology (RE-NET)
Restoring Active Memory (RAM)

Restoring Active Memory (RAM Replay)
Revolutionizing Prosthetics

Systems-Based Neurotechnology for Emergying Therapies
(SUBNETS)

Targeted Neuroplasticity Training (TNT)



BRAIN Thematic Areas:

Multi-scale Integration of the Dynamic Activity and Structure of the
NSF

To elucidate and link dynamics of the brain and neural circuits with brain

function, including its real-time physiological, behavioral and cognitive P nn
outputs ro g ra
Neurotechnology and Research Infrastructure S CO p e

To create tools to image, sense, record and affect realtime brain function and
complex behavior, and develop theories and systems to collect, visualize,
analyze, model , store, and distribute BRAIN data

Quantitative Theory and Modeling of Brain Function

To reveal emergent properties of the brain and provide predictive theoretical

frameworks to guide future research

Brain-Inspired Concepts and Designs
To strategically capitalize on insights gained from BRAIN to inspire novel

conceptual paradigms and innovative technologies and designs that will
benefit society

BRAIN Workforce Development

To educate a BRAIN workforce and create new career opportunities for

BRAIN discovery and innovation
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Lichtman and Denk 2011

Scales




Connectomics Workflow

Tissue
Preparation

Sectioning &
Wafer Prep

Image
Acquisition

Registration

Segmentation &
Synapse
Detection

Visualization
& Analysis




Automated Tape Collection of Slices

IBeser-rrpgeven Figure 1. Automatic Tape Collection of
SRR RRRRRERE Ultrathin Brain Sections
(A) Diagram of the automated tape-collecting ul-
tramicrotome (ATUM). The bottom reel of the ATUM
contains a plastic tape that is fed into the knife boat
of a diamond knife mounted on a commercial ul-
tramicrotome. The tape is collected on atake upreel
(top). (Red inset) Close-up view of the tape conveyor
positioned in the knife boat. The diamond knife boat
(dark blue) is filled with water (light blue). The dia-
mond knife (green rectangle) is at the opposite end
of the knife boat from the taping mechanism. It cuts
serial ultrathin sections from tissue embedded in a
plastic block. The sections then float on the surface
of the water in the knife boat until they adhere to the
BRRRR o 8 o E moving tape (see Movie S1).
100 FEREEE (B) ~10 m of Kapton tape with ~2,000 sections

ARRERR collected. Four of the 29-nm sections (red rect-
angle) are shown at a higher magnification at the
bottom of the panel.
(C) The reel of tape is then cut into individual strips
and mounted on silicon wafers for poststaining
and/or carbon coating. A low-power scanning
electron microscopy image of part of a wafer
containing 85 brain sections is shown. One of the
sections (red rectangle) is shown at a higher
7 magnification in the next panel.
g ,%! ég H (D) One 29-nm section containing neocortex and
hippocampus. The region that was studied at high
resolution is the dark-looking box (red arrow).
Scale bar, 1 mm.
See also Movie S1.
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High-Throug"rt Imaging
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61 Beam SEM
12 TB / day
2 PB in ~6 months
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Daniel Haehn
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13.7 million cell profiles in 1,850 slices

Fully automatic (RhoANA) Hand segmentation (VAST)

Kasthuri et al., Cell 2015
Knowles-Barley et al.




Progress on the (micro) Connectome
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Bobby Kasthuri, et. al. Argonne, UChicago and Harvard



2 Person-years
1500 pm3 Kasthuri et al., Cell
1/666.666th of 1 mm3 2015



Kasthuri et al., Cell 2015



Kasthuri et. al. Argonne



In-situ Reconstruction via X-ray
Tomography




Neurolines —
Neuronal Connectivity Analysis
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Al-Awami et al., TVCG 2014



DOE Contributions to BRAIN

L\ ASCR can play a unique role in BRAIN
N B e computing through advances in applied
_— ) mathematics and computer science
A S - R

: ,, together with HPC facilities.

Initia

Function Theory & Models

dynamic data

abstractions

Generation and analysis of raw data

Linking structure to function is a ‘grand challenge’ in general biology and materials
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