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Map from Alaska Public Lands Information 

Seasonal variations in permafrost are getting more extreme.  

This weakens infrastructure built on permafrost zones. 

"Trans	Alaska	Pipeline	Denali	fault	
shi4"	by	U.S.	Geological	Survey	
employee	-	Denali	Fault	Earthquake	
Photos	07	Nov	2002	(Direct	link).	
Licensed	under	Public	Domain	via	
Commons	

source:	Exploratorium	

We’re developing a low-cost system to 
frequently monitor structural stability of the 
ground under critical infrastructure.



How a typical seismic survey works
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Time for vibrations to reach sensors 
throughout the array indicates wave 

speeds in different areas. 
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Goal: low-cost frequent monitoring of the near surface 
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"Transpolar	Railway	between	Salekhard	and	
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How a passive seismic survey works
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Example from Jason Chang (Stanford), data c/o Nodal Seismic

correlations 
between windows 

of noise



What is distributed acoustic sensing (DAS)?

Source: Wikipedia Commons 

DAS repurposes a standard fiber 
optic cable probed by a laser as a 

seismic sensor. Backscattered light is 
used to calculate strain rates along 

the fiber.

Benefits: 
• Low cost per sensor 
• Low energy required 
• Flexible 
• 10s of km covered 

with single laser 

Downsides: 
• Lower signal/noise ratio 
• Lower sensitivity to 

waves at angles 
• Large amplitude noise 

from phase control 
issues  



free vibration sources ambient noise 
+ 

low-cost permanent sensors distributed acoustic sensing 
= 

low-cost large-scale frequent monitoring of 
ground stability under infrastructure on permafrost

Pilot: Richmond Field Station, Dec. ‘14



Pilot: Richmond Field Station, Dec. ‘14

I-580 

San Francisco Bay 

24  geophones 

cable trench 

cable trench 
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12-09-14 

Data 
recorded 
with iDAS



read%1%min.%traces%from%channels%of%interest%

impose%zero%mean%of%data%%

temporal%normaliza4on%%

whiten%the%spectrum%

bandpass%

scale%traces%to%equalize%19norms%of%channels%

fo
r%e

ac
h%
tr
ac
e:
%

cross9correlate%(FFT,%mul4ply,%IFFT)%

add%1%min.%cross9correla4on%(scale%by%energy)%

remove%spikes%(window%median)%%

slant%stack%to%get%dispersion%curves%

Raw data & cross-correlation processing
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DAS	channel	offset	(m)	
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Clear response after 10 minutes
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dispersion imagecross-correlation / virtual source response



Typical workflow is O(n2)…
DAS	channel	offset	(m)	
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n virtual source response 
estimates 

via n2 cross-correlations

n dispersion images with 
energy at set of (frq,vel) 
combinations from each 
virtual source response 

estimate
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input to 
dispersion 

domain surface 
wave inversion* 

*Dou, S. and J. Ajo-Franklin, 2014, Geophysics, 79.



…or we can get dispersion images in O(n) serial 
time with an embarrassingly parallel algorithm:
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filter & phase shift filter & phase shift filter & phase shift filter & phase shift

phase shift, 
multiply

phase shift, 
multiply

phase shift,
multiply

phase shift, 
multiply
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, t) from receivers at x1, . . . ,xn
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free vibration sources ambient noise 
+ 

low-cost permanent sensors distributed acoustic sensing 
= 

low-cost larger-scale frequent monitoring of 
ground stability under infrastructure on permafrost

Scaling up: Fairbanks, AK, Aug. ‘15



Site

patchy permafrost 
wooded area  

1 mi north of Fairbanks 
highway 400 m east 

passive recording  
                iDAS 

1 m channel spacing 
10 m gauge length 

1 kHz recording 
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Cross-correlations

Channel 844 Channel 745
15
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Rough patches

Road joints



Time records
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Bumps were probably the cause of 
artifacts in cross-correlations
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Cross-coherence No filtering applied
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Dispersion image
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free vibration sources ambient noise 
+ 

low-cost permanent sensors 
distributed acoustic sensing 

= 
low-cost large-scale frequent 
monitoring of ground stability 

under infrastructure on permafrost

Controlled thaw: Fairbanks, AK, now



Conclusions
Despite low signal-to-noise-ratio and directional sensitivity 

issues, DAS is a feasible option for further lowering the cost of 
ambient seismic noise studies. 

Such studies require huge amounts of data to be handled in a 
streaming context, so we have developed new algorithms 

suitable to these data. 

We continue to develop methods for automatic detection and 
removal of the effects of non-ideal noise sources.
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For more details…
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Richmond deployment: 
JAF, NL, TD, BF, EM, MR, CU, AW, A field test of distributed 
acoustic sensing for ambient noise recording, SEG extended 
abstracts 2015. 
DAS interferometry at Richmond: 
EM, JAF, SD, NL, TD, BF, MR, AW, CU, Interferometry of ambient 
noise from a trenched distributed acoustic sensing array, SEG 
extended abstracts 2015. 
Fast dispersion images: 
E. Martin, Fast dispersion curves from ambient noise, SEP report 
158, 2015. (paper in preparation, report available) 
DAS interferometry and noise at Fairbanks:
EM, NL, SD, JAF, AW, KB, TD, BF, MR, CU, Interferometry of a 
roadside DAS array in Fairbanks, AK, SEG extended abstract 2016 
(to appear).
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