JUMP: A Modeling
Language for Mathematical
Optimization

Miles Lubin, with lain Dunning and Joey Huchette
MIT

e Military logistics (diet problem)

e Economic modeling (World Bank)

e Scheduling (nurses, trains, airline crews, power plants)
e Optimal control (autonomous vehicles)

e Statistics (regression/inference)

(JUMP is being used is some of these areas)

Linear Algebra Optimization

y _ A\X Maximize x 1 +x2

Subject to:2x 1 + 3x 2 <= 2

x 1 >= ()

x 2 >= 0

e MATLAB created in late 1970s to provide a user-friendly interface to
LINPACK

e AMPL, GAMS, LINDO created in 1970s/1980s to provide a user-friendly
interface to optimization solvers

Why do you need a modeling language?

L L L I M T .
PR S T R e e e N
R [| L -

L MO T | [- | 1 s e e PO L N T

. . . . 3 1 N . - - . |

. . . . t L H 1

Why do you need a modeling language?

min E Ci, i 4,5
x

(4,5)eE
S.t. E Xi 5 = E Tik J=2,...,n—1
(¢,7)€E (J,k)EE
E Lin =
(t,n)eE

Why do you need a modeling language?

mcf = Model ()
@variable(mcf, 0 <= flow[e in edges] <= e.capacity)
@constraint (mcf, sum(flow[e] for e in edges if e.to==5)== 1)

@constraint (mcf, flowcon[n=2:4],sum(flow[e] for e in edges
if e.to==node) == sum(flow[e] for e in edges if e.
from==node))

@objective (mcf, Min, sum(e.cost * flow[e] for e in edges))

solve (mcf)

What did we want?

e Modern, modular, easy to embed...

o Within a simulation
o Within an interactive visualization

Interact with solvers while they are running
Easy to extend to specialized problem classes
Commercial tools are none of these

Open source tools have been slow

o Based on Python and MATLAB

Why We Created Julia

Feb 2012 | Jeff Bezanson, Stefan Karpinski, Viral Shah, Alan Edelman
In short, because we are greedy:.

We are power Matlab users. Some of us are Lisp hackers. Some are Pythonistas, others Rubyists, still others Perl
hackers. There are those of us who used Mathematica before we could grow facial hair. There are those who still can’t
grow facial hair. We've generated more R plots than any sane person should. C is our desert island programming
language.

We love all of these languages; they are wonderful and powerful. For the work we do — scientific computing, machine
learning, data mining, large-scale linear algebra, distributed and parallel computing — each one is perfect for some
aspects of the work and terrible for others. Each one is a trade-off.

We are greedy: we want more.

Can Julia solve our performance problem?

Table 2 Linear-quadratic control benchmark results. N=M is the grid size. Total time (in seconds) to process

the model definition and produce the output file in LP and MPS formats (as available).

JuMP/Julia AMPL Gurobi/C++ Pulp/PyPy Pyomo

N LP MPS MPS LP MPS LP MPS LP

250 0.5 0.9 0.8 1.2 1.1 8.3 2 139
500 2.0 3.6 3.0 4.5 44 276 244 534
750 5.0 8.4 6.7 10.2 101 61.0 545 121.0
1,000 92 169 116 17.6 17.3 108.2 975 214.7

M. Lubin & |. Dunning, “Computing in Operations Research using Julia”,
INFORMS Journal on Computing, 2015

JUMP history

Version 0.1: Initial public release (October, 2013)

Version 0.2: Solver “callbacks” (December, 2013)

Version 0.5: Nonlinear optimization (May, 2014)

Version 0.10: Semidefinite optimization (August, 2015)
Version 0.12: Rewrote nonlinear optimization (February, 2016)

Version 0.13: Renamed everything from camelCase (April, 2016)

Who's using it?

Gonzales et al.: Autonomous vehicles (https://youtu.be/bX4TXWO7dAOQ)
Korolko & Sahinoglu: EV charging schedules

Das Gupta et al.: Railway schedules

Giordano et al.: Variational Bayes

Anthoff: Environmental economics

Dvijotham et al.: Graphical models & optimal power flow

https://youtu.be/bX4TXWO7dA0

1OP Publishing Plasma Physice and Controlled Fusion

Plasma Phys. Control. Fusion 58 (2016) 045016 (16pp) doir10.10880741-333558/4/045M0 &

Inversion methods for fast-ion
velocity-space tomography in fusion plasmas

A S Jacobsen!, L Stagner’, M Salewski', B Geiger’, W W Heidbrink?,
S B Korsholm!, F Leipold', S K Nielsen', J Rasmussen', M Stejner’,
H Thomsen*, M Weiland® and the ASDEX Upgrade team’

Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
University of California Irvine, Irvine, CA 92697, USA

Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany
Max-Planck-Institute for Plasma Physics, Wendelsteinstrasse 1, 17491 Greifswald, Germany

W —

s

%} %5&

PRO gfmmmmg

OPERATIONS RESEARCH

L

A Primer on Computing
inghyun Kiwen

http://www.chkwon.net/julia/

http://www.chkwon.net/julia/
http://www.chkwon.net/julia/

Structured Modeling

min (:Oa:—I—Z:Z el

S.t.

Dx
Tix+ Wiy
Tox—+ WQyQ

— b07

— bla

— sz

Wnyn = by,
’ YN 2 0

StructJuMP 15

10

P4 /.\. Vah

o—o—*° m Load Module
Generate Model

Time (seconds)

4 8 16 32 64 128 256 512 10242048
Number of scenarios

Huchette, Petra, Qiang

Interacts with MPI-based solvers

Weak scaling test on Blues cluster at Argonne. 1 scenario = 1 core
Model generation <2% of total solution time

JuMPChance

@indepnormal (m, x, mean=0,var=1l)
@variable (m, z)

@constraint (m,

z*x >= -1, with probability=0.95)

Used with Dvorkin, and Backhaus to study a model of
integrating wind energy with the power grid (IEEE, 2015)

Thank youl!

o CSGF
e Julia developers and community

http://arxiv.org/abs/1508.01982

http://arxiv.org/abs/1508.01982
http://arxiv.org/abs/1508.01982

