

Jesse Lopez

NSF Science and Technology Center for Coastal Margin Observation & Prediction Oregon Health & Science University

The Columbia River Estuary

124°W

SATURN Observatory – Characterizing variability

Sensor network

Mobile platforms

SELFE Columbia River model

 Solve for hydrodynamics + sediment dynamics

- Biological and biogeochemical modules available
- Large domain to capture important processes in river-to-ocean continuum
- Realistic forcings for atmospheric and boundary conditions

SELFE modeling system

Semi-implicit Eulerian-Lagrangian Finite Element

- Solves Reynolds-averaged Navier-Stokes
 - Hydrostatic & Boussinesq assumptions
- Solves transport of temperature and salinity

Spatial discretization

- Elevation @nodes (pl)
- Velocity @sides (pl)
- Vertical velocity @prisms (FV)
- Tracers @prisms (FV)

Temporal discretization

- Implicit 2D mode for free-surface
 - Semi-Lagrangian (ELM) advection of momentum

SELFE – Governing equations

	Dimensionality	Equations			
Continuity	2D	$\frac{\partial \eta}{\partial t} + \nabla \cdot \int_{-h}^{\eta} \mathbf{u} dz = 0, \nabla \cdot \mathbf{u} = 0$			
Momentum	3D	$\frac{D\mathbf{u}}{Dt} = \mathbf{f} - g\nabla\eta + \frac{\partial}{\partial z} \left(\nu \frac{\partial \mathbf{u}}{\partial z}\right)$			
Explicit terms		$\mathbf{f} = -f\mathbf{k} imes \mathbf{u} + lpha g abla \hat{\psi} - rac{1}{ ho_0} abla p_A - rac{g}{ ho_0} \int_z^\eta abla ho d\zeta + abla \cdot (\mu abla \mathbf{u})$			
GLS TKE	ID	$\frac{Dk}{Dt} = \frac{\partial}{\partial z} \left(\nu_k^{\psi} \frac{\partial k}{\partial z} \right) + K_{mv} M^2 + K_{hv} N^2 - \epsilon$			
Length scale		$\frac{D\psi}{Dt} = \frac{\partial}{\partial z} \left(\nu_{\psi} \frac{\partial k}{\partial z} \right) + \frac{\psi}{k} \left(c_{\psi 1} K_{mv} M^2 + c_{\psi 3} K_{hv} N^2 - c_{\psi 2} F_{wall} \epsilon \right)$			
Stability function		$\psi = \left(c^0_\mu ight)^p k^m l^n$			
Transport	3D	$\frac{Dc}{Dt} = \frac{\partial}{\partial z} \left(\kappa \frac{\partial C}{\partial z} \right) + Q + \nabla \cdot \left(\kappa_h \nabla c \right), c = (S, T)$			

SELFE – Optimization

Optimizations

- PETSc to solve 2D continuity
- Optimized IO
 - Caching of NetCDF boundary conditions
- Optimized transport
- Generally, improved:
 - memory locality
 - vectorization

Strong-scaling test

- NERSC Edison system
- 98K 2D nodes, 3.5M 3D elements

SELFE - Performance results

Version	Test	Cores	Total time	Time per day	Speed Up
3.1	Hydrodynamics	128	8:54	0:38	_
4.0	Hydrodynamics	128	4:31	0:19	x2
4.0	Hydrodynamics	1024	1:32	0:06	x6
3.1	Hydrodynamics + 4 tracers	128	4:22	2:11	-
4.0	Hydrodynamics + 4 tracers	128	1:07	0:32	x4

SELFE - Sediment model

Sediment forecast model

Forecasts

- Enabled by optimized model •
- 3 day forecast ullet

Applications

- Production sediment forecast •
- Guide research cruises and AUVs •
- Trigger collection of transient features

1.5

1.0

0.5

0.0

-1.5 Jul 25

15

ົດ

5

[표 10

Elevation [m]

Capturing variability - Annual simulations

Columbia River Dynamics

- River discharge + tides control circulation and sediment dynamics
- River discharge strong seasonal variability
- Tides vary over ~14 day period

Sediment simulations

- Simulate entire year
 - 36 s time step
- Cover the range of seasonal forcings

Annual simulations

Columbia River Dynamics

- River discharge + tides control circulation and sediment dynamics
- River discharge strong seasonal variability
- Tides vary over ~14 day period

Sediment simulations

- Simulate entire year
 - 36 s time step
- Characterize dynamics in estuarine regimes

Suspended sediment dynamics

Depth integrated suspended sediment $S(x, y) = \int_{-h}^{\eta} S(x, y, z) dz$ Along-channel transect:

- Salinity
- Along-channel velocity <
- Suspended sediment

Sediment pathways

Sediment pathways

Depth and temporally integrated

$$\langle Q_s \rangle_t = \int_{t+T}^{t+T} \int_{-h}^{\eta} Q_s(z,t) dz dt$$

- Exposes complexity of channel system and interactions between channels, tidal shoals, and bays
- Dominant pathways invariant across tidal, tidal month, and seasonal time scales

Conceptual model of sediment dynamics

Conceptual Model

- I. High water Low energy
 - SSC deposits
- 2. Ebb tide High energy
 - SSC moves downstream
 - Patch of SSC over salt wedge
- 3. Low water Low energy
 - Low energy SSC deposits
- 4. Flood tide High energy
 - SSC moves upstream
 - SSC concentrated in salt wedge (Classical ETM)

Summary

- SELFE optimized with improved efficiency and strong-scaling
- Optimized model enabled:
 - Development of production forecast sediment simulations
 - Guidance of observations to capture transient features
 - Long-term studies of Columbia River estuary circulation and sediment dynamics
- Science facilitated by HPC systems + optimized model include:
 - Detailed characterization of sediment dynamics in Columbia River estuary
 - Unifying conceptual model of sediment dynamics in Columbia River estuary

Acknowledgements

- Antonio Baptista (OHSU)
- Tuomas Karna (OHSU)
- Charles Seaton (OHSU)
- Paul Turner (OHSU)
- Tawnya Peterson (OHSU)
- Joe Needoba (OHSU)
- Sarah Riseman (OHSU)
- Mojgan Rostamina (OHSU)
- Jed Brown (CU-Boulder / Argonne)

- Yvette Spitz (Oregon State)
- Clara Llebot (Oregon State)
- Andre Sherbina (UWashington-APL)
- Tom Sanford (UWashington-APL)
- Craig McNeil (UWashington-APL)
- J.Paul Rinehimer (UWashington-APL)
- Guy Gelfenbaum (USGS)

ce n'est pas vide

Application: Light attenuation $K_d(PAR)$

K_d(PAR)

- Describes attenuation of light through water column
- Dependent on suspended and dissolved material

Application: Light attenuation model

- Characterized light variability over tidal to seasonal time scales
- Kd model implemented in circulation model to provide time-dependent attenuation of solar radiative heat transfer

Application: Estimates of bacterial productivity

• How productive are bacteria in the estuary?

Predictions based on Generalized Linear Model

Empirical model applied to observations at SATURN-01

