Geochemistry in the Age of Open Data New insights into the formation and evolution of Earth's continental crust.

C. Brenhin Keller Princeton University, Department of Geosciences

Motivation

1. Understanding how the Earth system operates

- There is still a lot we don't know about our own planet \bullet

Motivation

- 1. Understanding how the Earth system operates
 - There is still a lot we don't know about our own planet
- 1. Case study of what can be done with open data
 - There is plenty of fundamental, exploratory science to be done with freely-available datasets

Motivation

- 1. Understanding how the Earth system operates
 - There is still a lot we don't know about our own planet
- 1. Case study of what can be done with open data
 - There is plenty of fundamental, exploratory science to be done with freely-available datasets

USGS

Plate Tectonics

USGS

 $T\uparrow, P\downarrow, H_2O\uparrow$

Plate Tectonics Two types of crust

USGS

Plate Tectonics Two types of crust

oceanic crust lower elevation

USGS

continental crust higher elevation

Mineralogy & Composition

Photo Credit: Rob Lavinsky Quartz SiO2

Orthoclase KAISi₃O₈

Plagioclase (Na,Ca)(Si,AI)AlSi₂O₈

Pyroxene (Fe,Mg,Ca)₂Si₂O₆

> Olivine (Fe,Mg)₂SiO₄

Bimodal Topography Required for efficient silicate weathering

USGS

more dense

less dense

Silicate Weathering Feedback

 $CO_2 + CaSiO_3 \rightleftharpoons CaCO3 + SiO_2$

Bimodal Topography

Lorenz et al. (2011) *Icarus*

Bimodal Topography

Lorenz et al. (2011) *Icarus*

Production & Evolution of Continental Crust Why is continental crust less dense than oceanic crust?

Primary magma flux from mantle to crust is basalt in **both cases**

USGS

Production & Evolution of Continental Crust Why is continental crust less dense than oceanic crust?

Primary magma flux from mantle to crust is basalt in **both cases**

USGS

Production & Evolution of Continental Crust

Fundamental question:

How long has plate tectonics been operating on Earth?

Proposed initiations of plate tectonics

	Present	
	0.54 Gya	Phanerozoic
	2 5 Gva	
	cyu	Archean
	4.0 Gya	
Korenada 2013	4.5 Gya	Hadean

Suggested onset time of plate tectonics

← ~0.85 Gya (Hamilton 2011)

← ~1 Gya (Stern 2005)

← ~2.8 Gya (Brown 2006)

- ← >3 Gya (Condie & Kröner 2008)
- ← >3.1 Gya (Cawood et al. 2006)
 ← ~3.2 Gya (Van Kranendonk et al. 2007)
- ← >3.6 Gya (Nutman et al. 2002)
- ← >3.8 Gya (Komiya et al. 1999)
- ← ~3.9 Gya (Shirey et al. 2008)

← >4.2 Gya (Hopkins et al. 2008)

Earth's crust is chemically heterogeneous

Average Temporal Trends

Petit et al., 1999

Vostok Temperature Record

Average Temporal Trends Change over time can resolve process

Petit et al., 1999

Average Temporal Trends

Na₂O (wt. %)

Age (Ma)

Sample Locations

~66,000 samples via EarthChem, ~2500 via K. Condie, ~1500 via J-F. Moyen

Weighted Bootstrap Resampling Monte Carlo Analysis

$$W_i \propto 1 / \sum_{j=1}^n \left(\frac{1}{\left(\left(z_i - z_j \right) \right)^{n-1}} \right)$$

Minimizing sampling bias by sample weighting

Weighted Bootstrap Resampling

Weighted Bootstrap Resampling Monte Carlo Analysis Example: basaltic K₂O content

Temporal trends in basalt geochemistry (43-51% SiO₂)

Temporal correlation with Great Oxidation Event

Sr Enrichment

Fundamental question:

• How long has plate tectonics been operating on Earth?

USGS

Flux melting

H₂O

1																	18
1 H ⁺ bydrogen	2													. –			2 He
nyarogen	2											13	14	15	16	17	nenum
³ Li ⁺	⁴ Be ²⁺											5 B	⁶ C	7 N ³⁻	⁸ O ²⁻	9 F ⁻	¹⁰ Ne
lithium	beryllium											boron	carbon	nitride	oxide	fluoride	neon
11	12											13	14	15	16	17	18
Na ⁺	Mg ²⁺											Al ³⁺	Si	P ³⁻	S ²⁻	CL	Ar
sodium	magnesium	3	4	5	6	7	8	9	10	11	12	aluminum	silicon	phosphide	sulfide	chloride	argon
19	20	21	22	²³ ₁ /3+	24 Cr ³⁺	25 Mn ²⁺	26 Fo3+	27 Co^{2+}	²⁸ Ni ²⁺	²⁹ Cu ²⁺	30	31	32	33	34	35	36
K ⁺	Ca ²⁺	Sc ³⁺	Ti ⁴⁺	vanadium(III)	chromium (III)	manganese(II)	iron (III)	cobalt (II)	nickel (II)	copper (II	2 Zn ²⁺	Ga ³⁺	Ge ⁴⁺	As ³⁻	Se ²⁻	Br⁻	Kr
potassium	calcium	scandium	titanium	V ⁵⁺ vanadium (V)	Cr ²⁺ chromium (II)	Mn ⁴⁺ manganese(IV)	Fe ²⁺ iron (II)	CO ³⁺ cobalt (III)	Ni ³⁺ nickel (III)	Cu ⁺ copper (I)	zinc	gallium	germanium	arsenide	selenide	bromide	krypton
37	38	39	40	41 Nh5+	42	43	44 Ru 3+	45	46 Pd2+	47	48	49	⁵⁰ Sn ⁴⁺	51 Sh^{3+}	52	53	54
Rb ⁺	Sr ²⁺	γ3+	Zr ⁴⁺	niobium (V)	Mo ⁶⁺	Tc ⁷⁺	ruthenium(III)	Rh ³⁺	paladium(II)	Aq ⁺	Cd ²⁺	In ³⁺	tin (IV)	antimony(III)	Te ²⁻	1-	Xe
rubidium	strontium	yttrium	zirconium	Nb ³⁺ niobium(III)	molybdenum	technitium	Ru ⁴⁺ ruthenium(IV)	rhodium	Pd ⁴⁺ paladium(IV)	silver	cadmium	indium	Sn ²⁺ tin (II)	Sb ⁵⁺ antimony(V)	telluride	iodide	xenon
55	56	57	72	73	74	75	76	77	⁷⁸ Pt ⁴⁺	⁷⁹ Au ³⁺	$-80 H \alpha^{2+}$	⁸¹ TI+	⁸² Ph ²⁺	⁸³ Bi ³⁺	84Po24	85	86
Cs ⁺	Ba ²⁺	La ³⁺	Hf ⁴⁺	Ta ⁵⁺	W6+	Re ⁷⁺	Os ⁴⁺	Ir ⁴⁺	platinum(IV)	gold (III)	mercury (II)	thallium (I)	lead (II)	bismuth(III)	polonium(II)	At ⁻	Rn
cesium	barium	lanthanum	hafnium	tantalum	tungsten	rhenium	osmium	iridium	Pt ²⁺ platinum(II)	Au ⁺ gold (I)	Hg ₂ ²⁺ mercury (I)	TI ³⁺ thallium(III)	Pb ⁴⁺ lead (IV)	Bi ⁵⁺ bismuth(V)	Po ⁴⁺ polonium(IV)	astatide	radon
87	88	89															•
Fr ⁺	Ra ²⁺	Ac ³⁺															
francium	radium	actinium	⁵⁸ Ce	4+ 59 (IV) Dr3	60 3+ Nic	61 3+ Drea	62 3+ Cm		1 ³⁺ 64	65 3+ ти	³⁺	и ³⁺ Цс	3+ E r	3+ 69 Tr	3+ V	h3+	1
			Ce	23+ praseodyr	nium neodyn	nium prometh	nium samari		$ _{2^+}$ gadolin	ium terbi	um dyspros	sium holmiu	um erbiu	m thuliu	ım ytte	rbium	lutetium
			90	91 Do	5+ 92	6+ 93	94 D.	.4+ 95 ^	3+ 96	97 D	1,3+ 98	99	100	101	J2+ 102	$N_{2} = 2 + 10$	03
			Th	4+ protactiniu	ım(V) uranium		5+ Plutoniu	m(IV) americiu	m(III) Crr	³⁺ Berkeliu	um(III) Cf	³⁺ Es ²	³⁺ Fn	אין	um (II) nobe	lium(II)	Lr ³⁺
			thoriu	um Pa protactiniu	4+ U m(IV) uranium	4+ neptun	ium Pu	n(VI) americiu	n ⁴⁺ curiu m(IV)	ım B berkeliu	$ \mathbf{k}^{4+} $ californ um(IV)	nium einsteir	ium fermiu	um Mo mendeleviu] ³⁺ N ™(III) nobe	IO ³⁺ Iav ium(III)	wrencium

Fluid solubility

Fluid solubility

									18
				13	14	15	16	17	2 He helium
				5 B boron	6 C carbon	7 N ^{3−} nitride	8 O ²⁻ oxide	9 F [−] fluoride	10 Ne neon
9	10	11	12	13 Al ³⁺ aluminum	14 Si silicon	15 P ³⁻ phosphide	16 S ²⁻ sulfide	17 Cl [−] chloride	18 Ar argon
CO^{2+} cobalt (II) CO^{3+} obalt (III)	²⁸ Ni ²⁺ nickel (II) Ni ³⁺ nickel (III)	²⁹ Cu ²⁺ copper (II) Cu ⁺ copper (I)	30 Zn ²⁺ zinc	31 Ga ³⁺ gallium	32 Ge ⁴⁺ germanium	33 As ^{3–} arsenide	34 Se ²⁻ selenide	35 Br [−] bromide	36 Kr krypton
⁵ Rh ³⁺ rhodium	⁴⁶ Pd ²⁺ paladium(II) Pd ⁴⁺ paladium(IV)	47 Ag ⁺ silver	48 Cd ²⁺ cadmium	49 In ³⁺ indium	⁵⁰ Sn ⁴⁺ tin (IV) Sn ²⁺ tin (II)	⁵¹ Sb ³⁺ antimony(III) Sb ⁵⁺ antimony(V)	52 Te ²⁻ telluride	53 ⁻ iodide	54 Xe xenon
r ⁷ Ir ⁴⁺ iridium	⁷⁸ Pt ⁴⁺ platinum(IV) Pt ²⁺ platinum(II)	⁷⁹ Au ³⁺ gold (III) Au ⁺ gold (I)	⁸⁰ Hg ²⁺ mercury (II) Hg ₂ ²⁺ mercury (I)	⁸¹ TI ⁺ thallium (I) TI ³⁺ thallium(III)	82 Pb ²⁺ lead (II) Pb ⁴⁺ lead (IV)	⁸³ Bi ³⁺ bismuth(III) Bi ⁵⁺ bismuth(V)	⁸⁴ Po ²⁺ polonium(II) Po ⁴⁺ polonium(IV)	85 At [−] astatide	86 Rn radon

	⁶³ Fu ³⁺	64	65	66	67	68	69	70	71
+	europium (III)	Gd ³⁺	Tb ³⁺	Dy ³⁺	Ho ³⁺	Er ³⁺	Tm ³⁺	Yb ³⁺	Lu ³⁺
n	Eu ²⁺ europium (II)	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
+-	⁹⁵ ∆m ³⁺	96	97 Rk3+	98	99	100	$101 Md^{2+}$	¹⁰² No ²⁺	103
V)	americium(III)	Cm ³⁺	berkelium(III)	Cf ³⁺	Es ³⁺	Fm ³⁺	mendelevium (II)	nobelium(II)	Lr ³⁺
)+	Am ⁴⁺	curium	Bk ⁴⁺	californium	einsteinium	fermium	Md ³⁺	No ³⁺	lawrencium
/I)	americium(IV)		berkelium(IV)				mendelevium (III)	nobelium(III)	

Element mobility in slab fluids

Expectation for subduction initiation at 2.5 Ga

Slab fluid input

Fundamental question:

• How long has plate tectonics been operating on Earth?

Conclusions

Fundamental question:

• How long has plate tectonics been operating on Earth? Throughout the entire preserved rock record

Conclusions

Crustal differentiation?

Results from:

- *Nature* **485**, 490-493
- Keller et al. (2015) "Volcanic-plutonic parity and the differentiation of the continental crust" Nature 523, 301-307
- history"

• Keller & Schoene (2012) "Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago"

• Keller & Schoene (*in preparation*) "Geochemical evolution of basalts preserved in the continental crust throughout Earth

Acknowledgements

Blair Schoene Kyle Samperton Jon Husson

Melanie Barboni Frederik Simons Blake Dyer

Simulation results High-silica melts can leave a low-silica cumulate

Simulation results Differentiation at the base of the crust may help

Temporal correlation with Great Oxidation Event

Sr Enrichment