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Bimodal Topography

sources) have been formatted 1 ! 1! to facilitate comparison. There
is additionally a hyposgram (Clark et al., 1988) derived from some
limited groundbased radar measurements of Mercury (we may ex-
pect that knowledge of mercurian topography will improve sub-
stantially in coming years with the arrival in orbit of the
MESSENGER spacecraft equipped with a laser altimeter and stereo
imaging capability – it seems likely that the hypsogram may
change appreciably as new data includes coverage of major basins).

These datasets, together with the Titan hyposgram, are plotted
in Fig. 3, on the same axes. The narrowness of the Titan hypsogram
is striking, as is its unimodality compared with Earth and Mars.
Some brief summary statistics of topographic range on the terres-
trial planets are given in Table 2. The narrowness deserves some
comment. Not only is it narrow in absolute terms, but it is also nar-
row when normalized to the planetary radius, and even more so
when considered in overburden pressure terms (density ! grav-
ity ! height) wherein Titan’s gravity and crustal density are both
lower than for the terrestrial planets. It is superficially similar in
shape and width to the land areas of Earth (perhaps due to the role
of fluvial erosion on both bodies) but Titan’s hypsogram is notice-
ably narrower and lacks the long tail due to Earth’s (actively-con-
structed) mountains.

In fact, some consideration of Titan’s topography was made
prior to Cassini, in order to develop a descent time uncertainty
budget for the Huygens probe in order to assure at least 3 min of
operation post-impact (one cannot know the time of touchdown
if one does not know how high or deep the landing site is). A topo-
graphic range of ±2 km was adopted for this purpose, based on
analogy with Ganymede, for which some terrain heights had been
estimated in Voyager imagery. This estimate seems to have been
robustly conservative. Perron and de Pater (2004) discuss the vis-
cous spreading of an ice continent on Titan (stimulated by knowl-
edge of the bright region now known as Xanadu). They find that

relief should not exceed 3–7 km. Thus in many respects the Titan
hypsogram is narrower than had been expected based on an ‘icy
satellite geophysics’ perspective, again perhaps reflecting the role
of fluvial processes.

The asymmetry of the Titan curve is somewhat distinctive in
that it is slightly negatively skewed. Whereas the terrestrial body
terrains (considering Earth’s land area only, and ignoring the more
complicated martian situation) have longer tails of positive topog-
raphy (i.e. the mean is above the mode), this is not the case for the
geoid-corrected Titan data. This perhaps indicates the presence of
large unfilled depressions on Titan, with comparatively few moun-
tains. It may well be that this negative skew would be yet more
prominent if a hypsogram were constructed with estimated sur-
face heights of the liquid-filled basins Ligeia and Kraken Mare,
whose sea-beds are not probed by the radar.

Fig. 4 shows the same hypsograms as Fig. 3, but with logarith-
mic abscissae to emphasize the tails of the distributions. Mars
and Venus both have ragged tops, suggesting perhaps construction
of mountains that was vigorous compared with the rate of erosion
then or since. The top of the terrestrial hypsogram is sharply trun-
cated, evidence of the ‘glacial buzz-saw’. A low kurtosis of the Titan

Fig. 3. Planetary hypsograms plotted on the same axes to highlight differences. Notice that most hypsograms are positively-skewed (mountainous terrain leads to a long tail
of positive topography, whereas topographic lows tend to be filled in). The dotted curves for Venus, Earth, Moon and Mars show the hypsograms that result if their respective
global datasets are sampled with only the coverage that exists for Titan – it is seen that the limited coverage captures the essential differences among these planetary bodies.
The extreme narrowness of the Titan hypsogram is evident.

Table 2
Topographic summary data for 1 ! 1! data (all values in km). See text for data
sources. Table lists mean radius and ranges that embrace 90%, 80% and 68% of the
topographic range, the latter corresponding to the root-mean-squared topographic
spread. Titan data are geoid-corrected.

Radius 90% 80% RMS

Moon 1738 7.2 5.2 3.9
Earth 6370 6.7 5.8 5.2
Mars 3396 8.2 6.7 5.65
Venus 6051 2.8 1.9 1.35
Titan (corr.) 2575 0.6 0.4 0.25
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Proposed initiations of plate tectonics

EA41CH06-Korenaga ARI 19 April 2013 12:36

1. INTRODUCTION
“It is the larger conception which determines the expression of the details.”

—Joseph Barrell (Barrell 1919, p. 282)

Five decades after the advent of the plate tectonics theory (e.g., Hess 1962, Vine & Matthews 1963,
Wilson 1965), our understanding of geology seems to have matured enough to discuss the initi-
ation of plate tectonics in Earth’s history, which might have been regarded in the past century as
too speculative to be legitimate. In recent years, quite a few papers have been published to suggest
when plate tectonics started, with proposed timings covering almost the entire history of Earth
(Figure 1). The diversity of opinions results from ambiguities in the interpretation of relevant
geological observations as well as different weightings on different kinds of data. Stern (2005),
for example, suggests that modern-style plate tectonics started around the beginning of the
Neoproterozoic era [∼1 billion years ago (1 Gya)] on the basis of the absence of ultrahigh-pressure

Present

0.54 Gya

2.5 Gya

4.0 Gya

4.5 Gya

Phanerozoic

Proterozoic

Archean

Hadean

Suggested onset time
of plate tectonics

~1 Gya (Stern 2005)
~0.85 Gya (Hamilton 2011)

>4.2 Gya (Hopkins et al. 2008)

>3 Gya (Condie & Kröner 2008)

~2.8 Gya (Brown 2006)

>3.1 Gya (Cawood et al. 2006)
~3.2 Gya (Van Kranendonk et al. 2007)

~3.9 Gya (Shirey et al. 2008)
>3.8 Gya (Komiya et al. 1999)

>3.6 Gya (Nutman et al. 2002)

Figure 1
Geologic timescale and suggestions for the onset time of plate tectonics. Suggestions shown here merely
demonstrate the diversity of opinions published in the past decade or so and are not meant to be a
comprehensive compilation of recent literature.
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Earth’s crust is chemically heterogeneous
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Change over time can resolve process
Average Temporal Trends
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Average Temporal Trends
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~66,000 samples via EarthChem, ~2500 via K. Condie, ~1500 via J-F. Moyen 

Sample Locations
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Minimizing sampling bias by sample weighting

Weighted Bootstrap Resampling Monte Carlo Analysis



Weighted Bootstrap Resampling
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Element mobility in slab fluids



Expectation for subduction initiation at 2.5 Ga
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Mobility in slab fluids
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Conclusions

Fundamental question: 

• How long has plate tectonics been operating on Earth? 
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Simulation results
High-silica melts can leave a low-silica cumulate
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Differentiation at the base of the crust may help



Temporal correlation with Great Oxidation Event
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