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Motivation

• Bayesian methods for identification and estimation are critical 
to the robust system analysis

• The computational intensity of MCMC sampling methods is the 
main bottleneck for Bayesian inference

Goal:
Develop new algorithms based upon dynamical systems to 
better sample probability distribution
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The Bayesian Inference Problem

Bayes’ Theorem



The Bayesian Inference Problem

Bayes’ Theorem

Intractable



The Bayesian Inference Problem

Bayes’ Theorem

Posterior Estimation:



The Bayesian Inference Problem

Bayes’ Theorem

Effective Number of Samples:

Posterior Estimation:



Markov Chain Monte Carlo

• Design a Markov Chain kernel which: 

– Minimizes the convergence (burn-in) time to the stationary 
distribution

– Minimizes the time correlation when sampling the stationary 
distribution

• Sufficient conditions for stationary distribution

– Detailed Balance → Reversibility → Existence

– Ergodicity→ Uniqueness



Sampling using Auxiliary Dynamical Systems

• We can equate the joint probability and a Hamiltonian

• Use the corresponding Hamiltonian dynamical system as an 
efficient proposal distribution

Euclidean HMC:

Riemannian HMC:

Posterior:



Second Order Langevin SDE

Ornstein Uhlenbeck ProcessHamiltonian Dynamics



Numerical Implementation

Strang Splitting

Metropolis Step

Stochastic Integrator for Ornstein-Uhlenbeck Process

Deterministic Integrator for Hamilton's Equations

Flipping momentum for reversibility



SOL-MC Design

• Gaussian Posterior → Linear System

– We can optimize by choosing C to minimize the largest eigenvalue 
and by aligning M to G

• Non-Linear Problems

– C(θ) can vary so we can locally linearize at θ to find the best C

– Changing M changes the Hamiltonian so it is best to find using test 
runs to estimate the global structure of the posterior



System Identification: Hysteretic Structure

u(t) Ground Acceleration

y(t)
Floor Acceleration

Non-Linear Dynamical System

Likelihood Function



Results



Performance Analysis



Future Directions

• Better Leverage Existing Dynamical Systems Methods

– Adaptive Time steps

– State Feedback Control

• Online Bayesian Inference

– Parameter Estimation →Simulating Dynamical System→Filtering
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