

Auxiliary Dynamical Systems for Bayesian Inference Second Order Langevin Markov Chain Monte Carlo

Thomas A. Catanach California Institute of Technology July 28, 2016

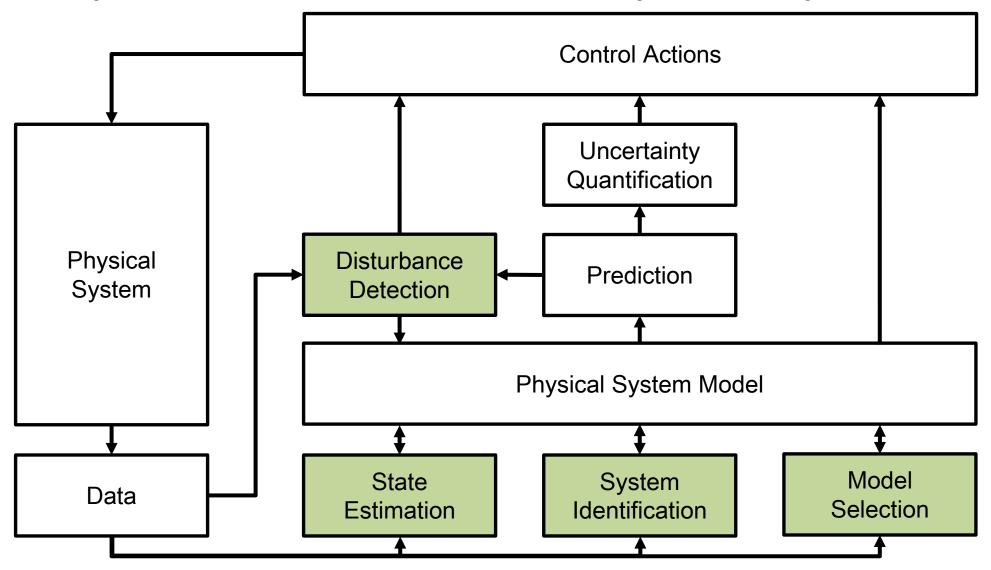
Motivation

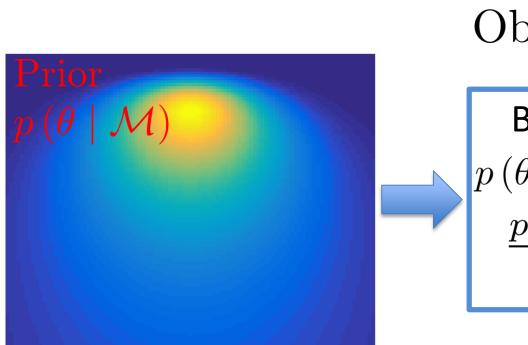
- Bayesian methods for identification and estimation are critical to the robust system analysis
- The computational intensity of MCMC sampling methods is the main bottleneck for Bayesian inference

Goal:

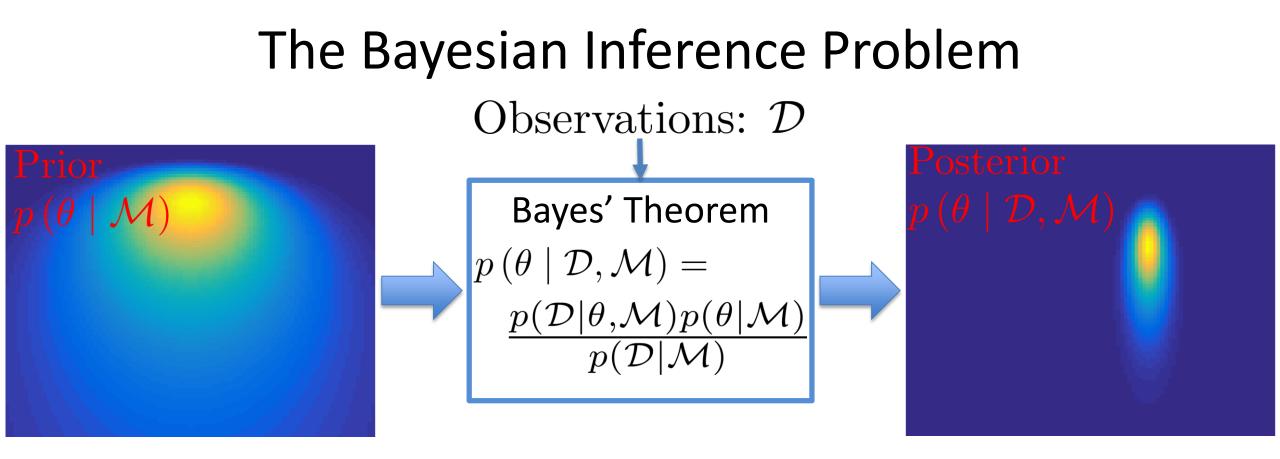
Develop new algorithms based upon dynamical systems to better sample probability distribution

Bayesian Inference for Physical Systems



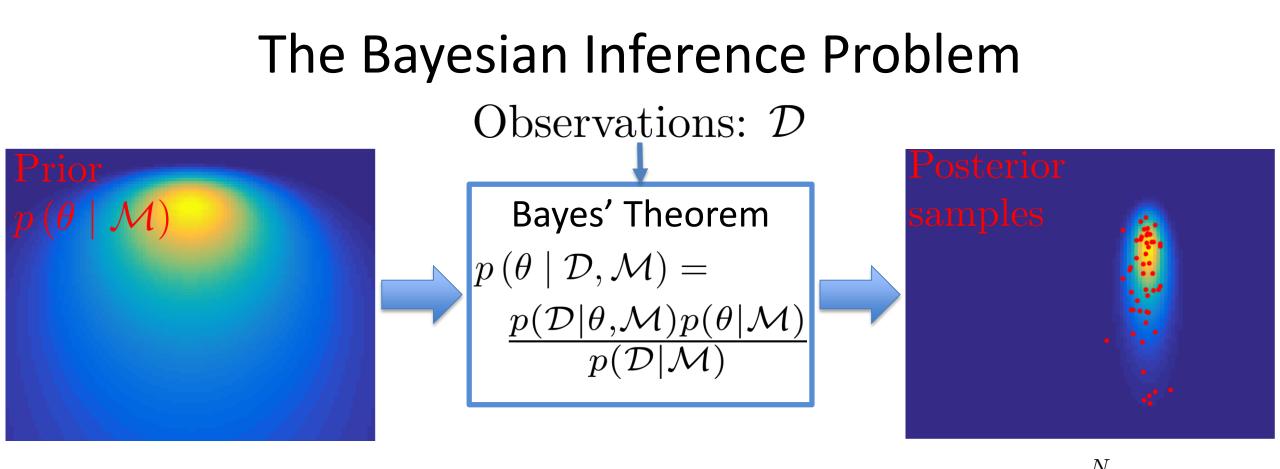


The Bayesian Inference Problem Observations: \mathcal{D} Bayes' Theorem $p\left(\theta \mid \mathcal{D}, \mathcal{M}\right) =$ $\mathcal{D}[\theta,\mathcal{M})p(\theta|\mathcal{M})$ $p(\mathcal{L}$



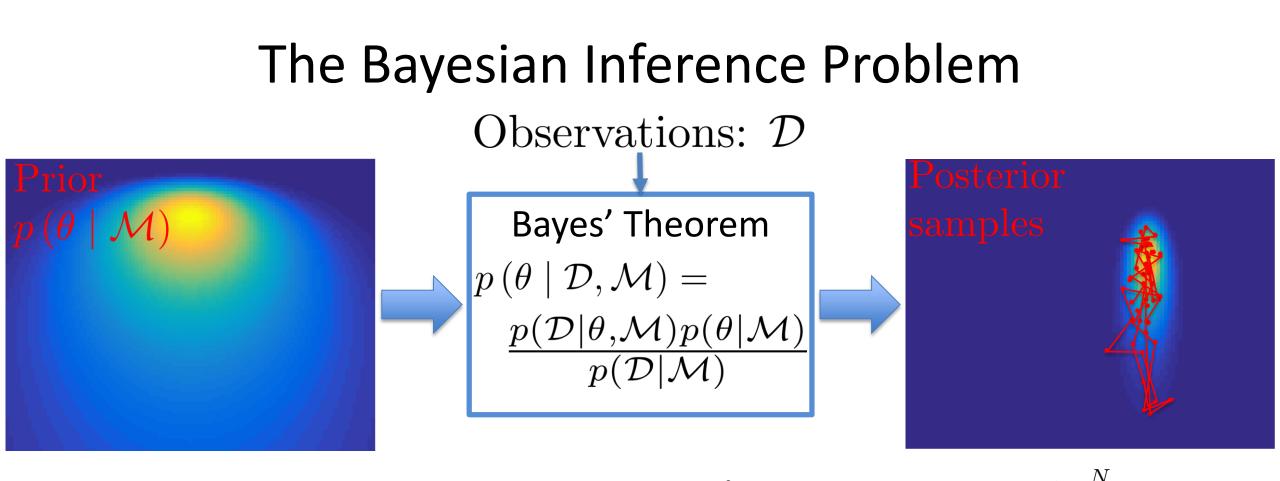
$$p\left(\mathcal{D} \mid \mathcal{M}\right) = \int p\left(\mathcal{D} \mid \theta, \mathcal{M}\right) p\left(\theta \mid \mathcal{M}\right) d\theta$$

Intractable



Posterior Estimation:

$$\mathbb{E}\left[g\left(\theta\right) \mid \mathcal{D}, \mathcal{M}\right] = \int g\left(\theta\right) p\left(\theta \mid \mathcal{D}, \mathcal{M}\right) d\theta \approx \frac{1}{N} \sum_{i=1}^{N} g\left(\theta_{i}\right)$$



Posterior Estimation:
$$\mathbb{E}[g(\theta) \mid \mathcal{D}, \mathcal{M}] = \int g(\theta) p(\theta \mid \mathcal{D}, \mathcal{M}) d\theta \approx \frac{1}{N} \sum_{i=1}^{N} g(\theta_i)$$

Effective Number of Samples: $ESS[g(\theta_{1:N})] = \frac{N}{1 + 2\sum_{k=1}^{N} \rho_k(g(\theta_{1:N}))}$

Markov Chain Monte Carlo

- Design a Markov Chain kernel which:
 - Minimizes the convergence (burn-in) time to the stationary distribution
 - Minimizes the time correlation when sampling the stationary distribution
- Sufficient conditions for stationary distribution
 - Detailed Balance \rightarrow Reversibility \rightarrow Existence

$$\pi(\theta) K(\theta' \mid \theta) = \pi(\theta') K(\theta \mid \theta')$$

- Ergodicity \rightarrow Uniqueness

Sampling using Auxiliary Dynamical Systems

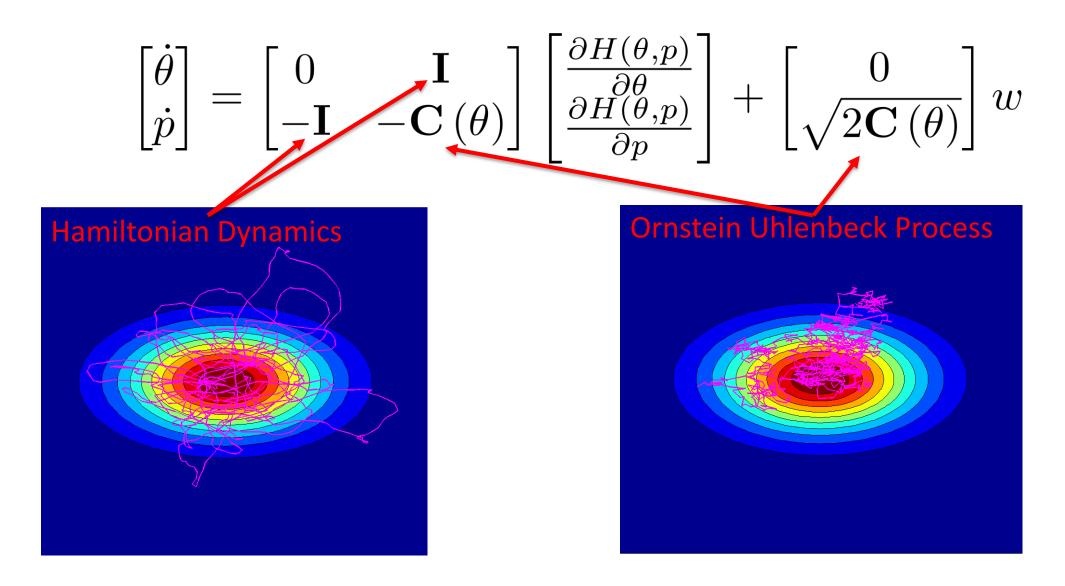
We can equate the joint probability and a Hamiltonian

Euclidean HMC: $H(\theta, p) = -\log \pi(\theta) + \frac{1}{2}p^T M^{-1}p$ Riemannian HMC: $H(\theta, p) = -\log \pi(\theta) + \frac{1}{2}\log|\mathbf{G}(\theta)| + \frac{1}{2}p^T \mathbf{G}(\theta)^{-1}p$

Posterior: $\Pi(\theta, p) \propto \exp(-H(\theta, p))$

• Use the corresponding Hamiltonian dynamical system as an efficient proposal distribution

Second Order Langevin SDE



Numerical Implementation

Strang Splitting

 $(\theta_{k+1}, p_{k+1}) = \psi_{t_k+h, t_k+h/2} \circ \Theta_h \circ \psi_{t_k+h/2, t_k} (\theta_k, p_k)$

 $\psi_{\frac{h}{2}}$ Stochastic Integrator for Ornstein-Uhlenbeck Process

Θ_h Deterministic Integrator for Hamilton's Equations

Metropolis Step

$$(\theta_{n+1}, p_{n+1}) = \begin{cases} (\theta_{n+1}^*, p_{n+1}^*), \text{ if } \zeta_n < \alpha \left(\theta_n, p_n, \theta_{n+1}^*, p_{n+1}^*\right) \\ (\theta_n, -p_n), \text{ otherwise} \end{cases}$$

Flipping momentum for reversibility

SOL-MC Design

• Gaussian Posterior \rightarrow Linear System

$$\begin{bmatrix} \dot{\theta} \\ \dot{p} \end{bmatrix} = \begin{bmatrix} 0 & \mathbf{M}^{-1} \\ -\mathbf{G} & -\mathbf{C}\mathbf{M}^{-1} \end{bmatrix} \begin{bmatrix} \theta \\ p \end{bmatrix} + \begin{bmatrix} 0 \\ \sqrt{2}\mathbf{C} \end{bmatrix} w$$

- We can optimize by choosing C to minimize the largest eigenvalue and by aligning M to G
- Non-Linear Problems
 - $C(\theta)$ can vary so we can locally linearize at θ to find the best C
 - Changing M changes the Hamiltonian so it is best to find using test runs to estimate the global structure of the posterior

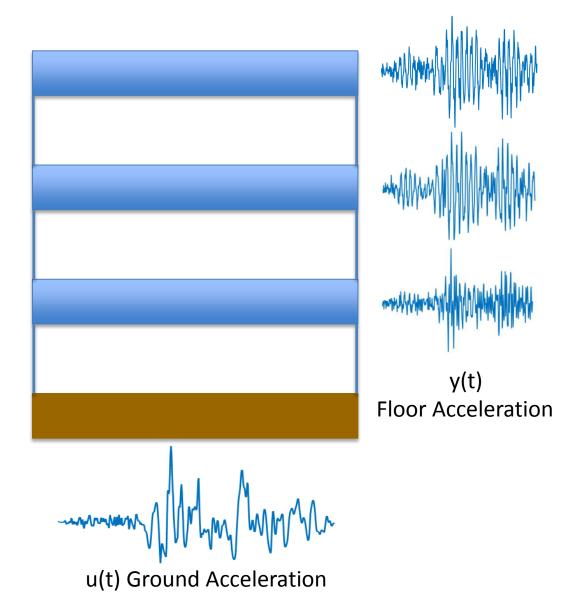
System Identification: Hysteretic Structure

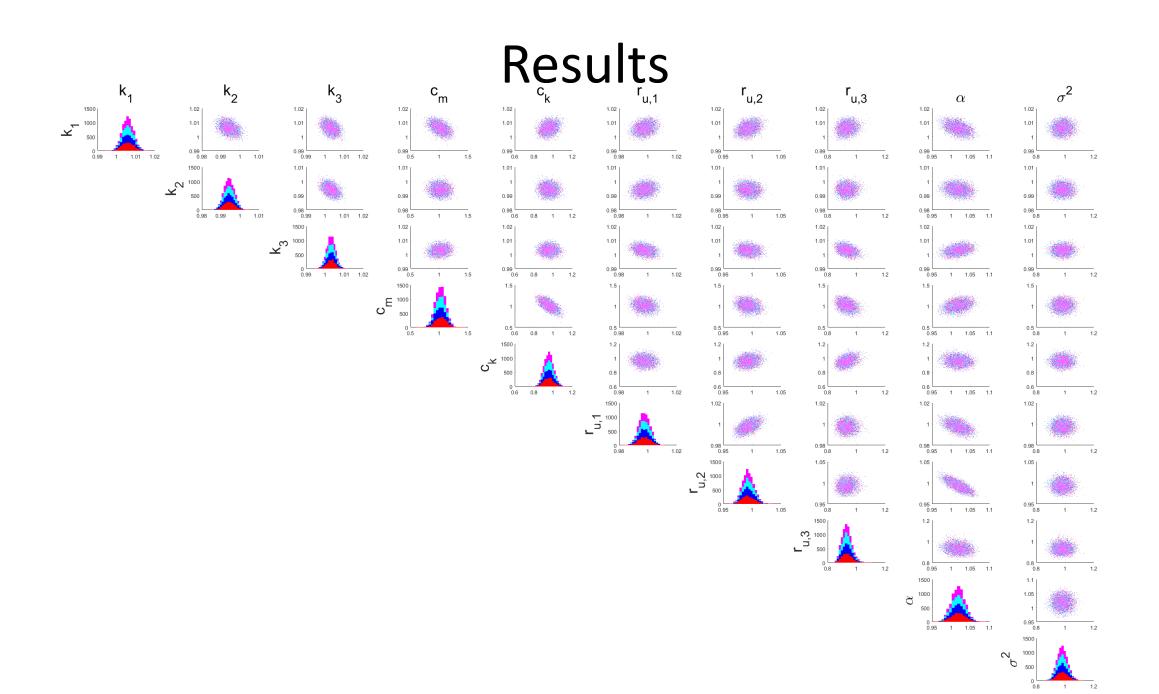
Non-Linear Dynamical System

 $\dot{x}(t) = f(x(t), u(t), \theta)$ $y(t_i) = h(x(t_i), u(t_i), \nu(t_i, \theta), \theta)$

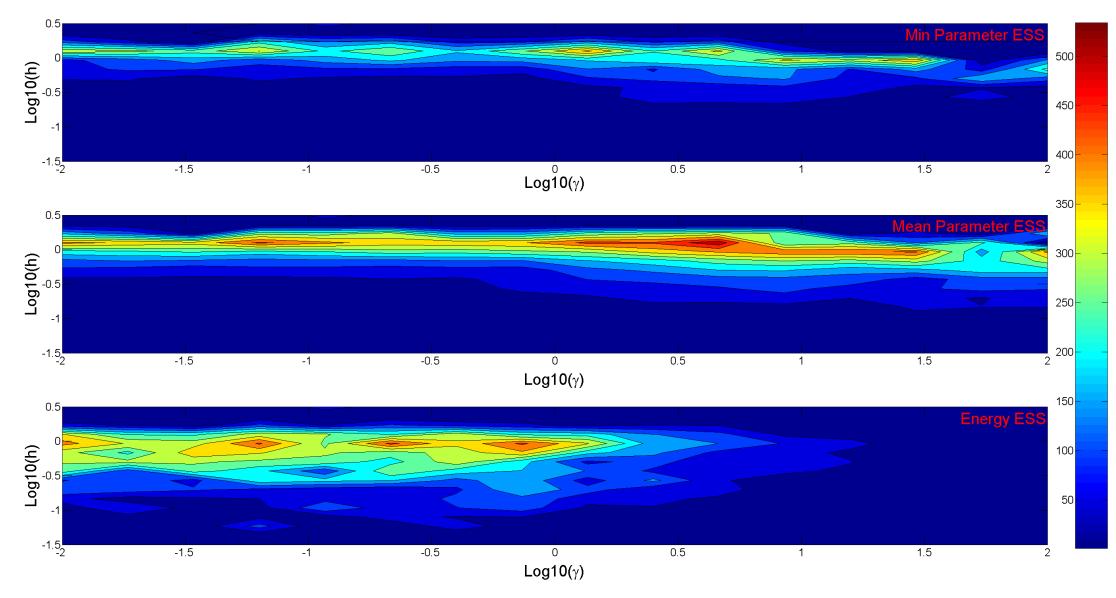
Likelihood Function $p\left(\mathcal{D} \mid \theta, \sigma\right)$

$$(2\pi\sigma^2)^{\frac{-N_d N_t}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{N_d} \sum_{t=1}^{N_t} \left(y_t^{(i)}(\theta) - \hat{y}_t^{(i)}\right)^2\right]$$





Performance Analysis



Future Directions

- Better Leverage Existing Dynamical Systems Methods
 - Adaptive Time steps
 - State Feedback Control
- Online Bayesian Inference
 - Parameter Estimation → Simulating Dynamical System → Filtering

Thank You

- Advisor: Jim Beck
- CMS/Caltech
- LANL Practicum
 - Russell Bent
 - Earl Lawrence
- The Krell Institute
- DOE

Caltech

