

MECHANICAL AND NUCLEAR ENGINEERING

Phase-Change Heat Transfer in Energy Systems: Outlook for Simulation Enabled Advances

Alexander S Rattner

Assistant Professor

Department of Mechanical and Nuclear Engineering

The Pennsylvania State University

July 26, 2016

Thank You

DOE CSGF Program
 & Krell Institute

• Prof. Srinivas Garimella

& Sustainable Thermal Systems Laboratory

• Dr. Donna Guillen

& Idaho National Lab

Role of Phase Change in Energy Use

- 40% of US primary energy consumed in steam and vapor generation (EIA 2012, 2013)
- 72% of which rejected through condensation (Rattner & Garimella, 2011)
 - Accounts for 41% of freshwater consumption (Kenny et al., 2005)

Phase Change Heat Transfer & Energy

- Phase change found in almost all energy intensive processes
- Great energy density in phase-change processes
 - − 1 liter air (100 → 200°C): 96 J
 - − 1 liter water (liquid → vapor at 100°C): 2.2 MJ

Electricity production

(Steam generation, Steam condensation)

Air conditioning

(Evaporative cooling, condensation heat rejection)

Distillation

(Selective evaporation, condensation)

Challenges of Predicting Phase Change Flows

 Multiphase flows: distinct materials, discontinuities in domain, change of topology, orientation, interfacial forces, wide range of scales

Air-water flow (Wood & Rattner, 2016)

Engineering Phase Change Heat Transfer Systems

- Three pillars applied to phase-change heat transfer
- Analytic Theory

Experiments

- Limited to simplest
 Applicable for complex processes
 processes
 - Limited generality (fluids, flow rate...)

Simulations

 Great potential for high fidelity results... but in infancy


```
(Bolotnov, 2014)
```


(Samuel, 2012)

(Cooke and Kandlikar, 2011)

Research Direction

• Advance understanding of phase change heat transfer from phenomena to full system scales

Complementary simulation and experimental research program

Validation Studies

Simulation (determining internal fields)

Experiments (real-time measurements)

Outline

- Introduction and Background
- Application: Flow evaporation and bubble pumps for off-grid refrigeration needs
- Application: Dropwise condensation for desalination
- Open research challenges in phase-change simulations and potential directions
- Summary and conclusions

Diffusion Absorption Refrigeration Cycle

- Conventional refrigeration systems require electrical input (compressor & pumps)
 - Limits applications to settings with electrical infrastructure
- Single-pressure (DAR cycle) absorption requires only thermal input

Solar-thermal refrigeration for vaccines and medicine in developing countries

Fully thermally activated air-conditioning in remote locations

DAR Thermodynamic Cycle

- Only thermal input
- Single-pressure operation
- Three working fluids (refrigerant, absorbent, auxiliary gas)
- Buoyancy driven internal flows (bubble pump, gas loop)

Research Objectives

- Existing DAR systems require high T_{source}, high T_{evap}, or forced liquid cooling
- Goal: fully passive, low T_{source} (110 130°C), low T_{evap} (~5°C) operation

Bubble-Pump Generator

- BPG establishes flow rates and performance in full system
- **Challenge**: Predict $m_L \& m_V$ given: $D, S_r = h/H, Q_{BP}$, fluid properties
- Incomplete understanding of Taylor flow at intermediate-diameter scale

VOF Simulation Approach

- Represent phase fraction in each cell with: $\alpha \in [0,1]$
- Solve advection equation for α : $\frac{\partial \alpha}{\partial t} + \frac{\partial}{\partial x_i}(u_i \alpha) = 0$
- Weight fluid properties with α : $\theta = \alpha \theta_{L} + (1 \alpha) \theta_{G}$
- Volumetric surface tension force in interface cells

Two-Phase Flow Morphologies

Comparison with experiment

Bo = 8.7Bo = 8.7 $N_f = 2340$ $N_f = 2340$ $Re_i = 880$ $Re_i = 885$

Reducing relative surface tension (Bo)

Reducing relative viscosity (N_f)

15

Decomposing Hydrodynamics

• Simulation decomposed to identify hydrodynamic contributions

Need for Enhanced Bubble Pump Design

- Conventional configurations are spot-heated – Needs high source temperatures ($T_{gen} > 180^{\circ}$ C)
- Limits applications to settings with high grade thermal sources

Research Needs

- Continuously heated BPG
- Flow develops along full component length
 - Need phase-change simulation approach to study this process

Phase Change Formulation

- Phase-change rate from simulation time scale: $\dot{q}_{PC}^{\prime\prime\prime} = (\rho c_p)(T T_{sat})/\Delta t$
- Phase ($\dot{\alpha}_{PC}$) and volume (\dot{v}_{PC}) source terms from \dot{q}_{PC}'''

Continuity
$$\frac{\partial u_{i}}{\partial x_{i}} = \dot{v}_{PC}$$
 Momentum $\rho \frac{\partial u_{i}}{\partial t} + \rho u_{j} \frac{\partial u_{i}}{\partial x_{j}} = -\frac{\partial p}{\partial x_{i}} + \mu_{eff} \frac{\partial^{2} u_{i}}{\partial x_{i} \partial x_{j}} + f_{i}$
Phase $\frac{\partial \alpha}{\partial t} + \frac{\partial}{\partial x_{i}} (u_{i} \alpha) = \dot{\alpha}_{PC}$ **Energy** $\frac{\partial (\rho h)}{\partial t} + \frac{\partial}{\partial x_{i}} (\rho u_{i} h) = \frac{\partial}{\partial x_{i}} \left[k_{eff} \frac{\partial T}{\partial x_{i}} \right] - \dot{q}_{PC}^{\prime\prime\prime}$

Applications: Taylor Flow Evaporation

- Simulation of coupling-fluid-heated evaporating Taylor flow
- Informed new wake-region heat transfer model

Absorber

1.8 m

Experimental System Evaluation

- Passive air-cooled operation at T_{source} = 110 130°C
- Refrigeration (T_{evap} : 6 \rightarrow 3°C) with *internal* COP: 0.06
- Chiller internal COP: 0.14 (T_{evap} : 12 \rightarrow 8°C)
- Minimum T_{evap} = -2°C 0.3 **Passive Refrigeration Conventional Range** 0.20 (Jakob *et al.*, 2008) 2 **Forced Flow** 0.15 0.2 High T_{evap} Refrigeration **Conventional Range** (Srikhirin et al., 2001) 6 COP 0.10 1. Chen *et al*. (1996) 5 3 2. Jakob & Eiker (2002) 0.1 3. Srikhirin & Aphornratana (2002) 0.05 4. Jakob *et al*. (2008) 5. Ben Ezzine et al. (2010) 0.0 6. Wang (2012) 0.00 30°C 11 140 160 100 120 180 200 \star . Present investigaton Source Temperature (°C)

Dropwise Condensation Simulation Toward Water Desalination Applications

Overview of Dropwise Condensation

- Condensation can occur in film or dropwise modes
- High dropwise contact-line density enables ~10× heat transfer
- Challenge: delaying/avoiding dropwise-to-film transition

Dropwise Condensation Mechanism

- Droplets form at discrete nucleation sites on surface (10⁷ – 10⁹ mm⁻²)
- Drops grow and merge until removed by body forces (refreshes surface)

- Most heat transfer from rigid microscale drops
- Renewal driven by hydrodynamics (coalescence and sliding)

Meakin (1992)

Vapor Compression Desalination

- Recuperative distillation process
 - Dropwise condensation-to-evaporation recovery:
 potential 35% capital cost reduction (Lukic *et al.*, 2010)
- Need simulation approaches to predict and prevent dropwise-tofilmwise flooding transition

Condensation to Evaporation Heat Recovery

Open Research Challenges for Dropwise Condensation

- How to predict heat transfer rate from first principles?
- Flow behavior and contributions of large droplets?
- Engineering film removal paths
- Prior models: track all droplets as rigid bodies
 - Can only capture part of active scales (10⁹ droplets / mm²)
 - Cannot account for hydrodynamics

Alexander S Rattner

26

Approach and Objectives

- Multiscale simulation approach
 - Large scale flows: Direct volume-of-fluid (VOF) simulation (expensive)
 - Microscale transport: Eulerian averaged formulation

Phase Change Model with Interfacial Resistance

- In dropwise condensation, most heat transfer near contact-line
 - Here interfacial thermal resistance dominant (sub-continuum)
- Model with closure model centered on interface

$$\dot{q}_{\rm pc}^{\prime\prime\prime} \equiv \frac{T - T_{sat}}{R_{\rm int}^{\prime\prime}} (A\delta(\vec{x} - \vec{x}_{int}))$$

Validation for Droplet Growth

- Validation study for condensing water, P_{atm} , $T_{wall} = T_{sat} 10 \text{ K}$
- Comparison with growth rate model of Le Fevre and Rose (1965)

Application to Large-Scale Dynamics

- VOF method applied to large-droplet dynamics
- Here: coalescence of two $D = 100 \mu m$ droplets

Coalescence Results and Assessment

- Heat transfer enhancement due to droplet mixing
- Finite coalescence time

Grid-Scale Condensation Simulation

- Preliminary simulations of grid-scale condensation
- (Water 127°C, reduced σ, ΔT = 10 K, 2 × 2 mm plate, t ~ 0.05 s)

Grid-Scale Condensation Simulation

- Integrate resolved grid-scale with SGS heat transfer model
- Based on *age* since last dry or wiped clear between large droplets $-q_{SGS}'(\tau)$ from Glicksman and Hunt (1972)

Grid-Scale Condensation Simulation

- Preliminary results, wall heat flux
- Coalescence & sliding events reset droplet growth cycle

Sub Grid Scale

Some Open Challenges in Phase-Change CFD & Potential Research Directions

Extreme Ranges of Scales in Boiling and Condensation

- Dropwise condensation: up to 10⁹ active sites / mm²
 - 5 cm square, storing x, y, and r (FP doubles): 55 TB memory!
- Boiling: µm-scale nucleation sites up to cm-scales vapor slugs
- Potential for multiscale approaches with low-cost microscale models

Interface Breakup and Coalescence

- Most solvers predict coalescence/breakup when meniscus $\leq \Delta_{mesh}$ – Fail to predict real interface dynamics (bubble bouncing)
- Need hybrid continuum-MD methods (Bardia et al., 2016)

FI+: +0.000 ms Exp: 12 µs

Air-water flow (Alnajdi & Rattner, 2016)

Summary and Outlook

Summary and Outlook

 Apply phase change simulations at phenomena and process scales to advance energy systems

Transport Phenomena Phase Change Processes

Thermal Energy Systems

Summary and Outlook

• Potential for complementary simulations and experiments (beyond validation)

• **Open research challenges:** highly multiscale processes, approaching continuum limits

Thank You

- Dr. Srinivas Garimella, STSL at Georgia Tech
- Krell Institute & DOE CSGF

Office of Science

• Colleagues

Alexander S Rattner