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Role of Phase Change in Energy Use

* 40% of US primary energy consumed in steam and vapor generation
(EIA 2012, 2013)

* 72% of which rejected through condensation (rattner & Garimella, 2011)
— Accounts for 41% of freshwater consumption (Kenny et al., 2005)
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Phase Change Heat Transfer & Energy

* Phase change found in almost all energy intensive processes

Great energy density in phase-change processes
— 1 liter air (100 =» 200°C): 96 J
— 1 liter water (liquid =2 vapor at 100°C): 2.2 MJ

Distillatlon
(Evaporative cooling, = (Selective evaporation,
Steam condensation) condensation heat reject&% \( condensation)

Air conditioning L2 |

Electricity production
(Steam generation,




Challenges of Predicting Phase Change Flows

* Multiphase flows: distinct materials, discontinuities in domain,
change of topology, orientation, interfacial forces, wide range of scales

Air-water flow
(Wood & Rattner, 2016)
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Engineering Phase Change Heat Transfer Systems

* Three pillars applied to phase-change heat transfer

Analytic Theory Experiments Simulations
* Limited to simplest ¢ Applicable for complex ¢ Great potential for
processes processes high fidelity
* Limited generality results... but in
(fluids, flow rate...) infancy
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(Samuel, 2012)

Liquid Supply

(Cooke and Kandlikar, 2011) (Bolotnov, 2014)



Research Direction

* Advance understanding of phase change heat transfer from
phenomena to full system scales
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 Complementary simulation and experimental research program
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* Application: Flow evaporation and bubble pumps
for off-grid refrigeration needs

* Application: Dropwise condensation for desalination

* Open research challenges in phase-change simulations
and potential directions

 Summary and conclusions
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Diffusion Absorption Refrigeration Cycle

* Conventional refrigeration systems require electrical input
(compressor & pumps)

— Limits applications to settings with electrical infrastructure

* Single-pressure (DAR cycle) absorption requires only thermal input

Electricity

~

Solar-thermal refrigeration for vaccines Fully thermally activated air-conditioning
and medicine in developing countries in remote locations



DAR Thermodynamic Cycle

* Only thermal input Flash Condenser @
_ Chamber [

* Single-pressure ? ‘ -
operation @

 Three working fluids Jovap

. 8 | Absorber Evaporator

(refrigerant, absorbent, = @)
auxiliary gas) —,4 | ( Bubble

. : Pum
Buoyancy driven E?V%S @ ump

internal flows — Concentrated solution Reservoir
(bUbble pump, gas |00p) — Dilute solution

‘Refrigerant vapor

— Refrigerant liquid A

— Concentrated auxiliary gas @ Generator Qgen
— Dilute auxiliary gas ’“x
T
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Research Objectives
high T,

* Existing DAR systems require high T
or forced liquid cooling

ource’ vap’

(110 -130°C), low T.,... (~5°C) operation

* Goal: fully passive, low T evap

ource

0.3 Conventional Range| O Passive Refrigeration
o o | LiJakob et al, 2008) |
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© 0.2 : 5
§ (e o soan [l (D High Teua,
© 1 | 1. Chen et al. (1996)
> 0.1 I 3 |l 2.Jakob & Eiker (2002)
= E 1 3. Srikhirin & Aphornratana (2002)
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0.0 6. Wang (2012)
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Bubble-Pump Generator

 BPG establishes flow rates and performance in full system
* Challenge: Predict m & m,, given: D, S, = h/H, Qg,, fluid properties
* Incomplete understanding of Taylor flow at intermediate-diameter scale

to Condenser mV<_| |_>mL
.

Gas Inlet

Absorber

Bubble
Pump

Reservoir

L ]
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Experimental Investigations of Taylor Flow

* High speed video to measure: U,, a, 6;, L,, L 100 i

— Universal Taylor flow rise velocity model 200 140 B
* Integrate with simulation for dynamic closure

CFD
Simulations

Experimental
Investigation

W RR—.

AP, 800 .r

lal|p|Ys|Ly/L

5, |VP,|VP

S

Engineering Model 900 =

Experimental Rise Velocity (m s™) 1000 |
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VOF Simulation Approach

* Represent phase fraction in each cell with: a €[0,1]

: : 0 0
* Solve advection equation for a: a(: e (ue)=0

* Weight fluid properties with a: 0=a6, +(1-a)é,
 Volumetric surface tension force in interface cells

;HHH

14



Two-Phase Flow Morphologies

Comparison
with experiment

Bo =8.7 Bo =8.7
N,=2340 N,=2340
Rej = 880 Rej = 885

Reducing relative
surface tension
(Bo)

Bo=5 Bo=10 Bo=20
N,=500 N,=500 N,=500
Alexander S Rattner Re! =325 F{ej = 465 Flej =460

Increasing
Flow rate
(Rej)

Reducing
relative
viscosity (N;)
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Decomposing Hydrodynamics

e Simulation decomposed to identify hydrodynamic contributions
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Need for Enhanced Bubble Pump Design

* Conventional configurations are spot-heated
— Needs high source temperatures (7., > 180°C)

* Limits applications to settings with high
grade thermal sources

Research Needs

e Continuously heated BPG

* Flow develops along full component length
— Need phase-change simulation approach to

study this process Q=UAQAT q=UAAT
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Phase Change Formulation

* Phase-change rate from simulation time scale: gp¢ = (pc, ) (T — Tsar) /At
* Phase ( ¢) and volume (V) source terms from g

L oLoou ou. oy ap o°u.
Continuity — =V Momentum p—+ =——+ —+ f
y ox PC P e PU; 8X ox Hese OX,0X, i
oo 0 . o(ph) o o, ot
Ph —+—(Ua)=a E + uh)=—1/\Kk.— |—q.
ase o (Ua)=dwc  Energy —— o (pu;h) x| o o [

Apc
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Applications: Taylor Flow Evaporation

* Simulation of coupling-fluid-heated evaporating Taylor flow

* Informed new wake-region heat transfer model
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Experimental System Evaluation

* Passive air-cooled operation at T, = 110 — 130°C
* Refrigeration (T,,,: 6 = 3°C) with internal COP: 0.06
* Chiller internal COP: 0.14 (T,,,: 12 - 8°C)
* Minimum Tevap = -2°C
o 0.3 r rConventional Range[ U Passive Refrigeration -
= O 4 2: (Jakob et al., 2008) :
= O | : O Forced Flow
015} 202 c= L L
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Dropwise Condensation Simulation

Toward Water Desalination Applications



Overview of Dropwise Condensation

* Condensation can occur in film or dropwise modes

* High dropwise contact-line density enables ~10x heat transfer

* Challenge: delaying/avoiding dropwise-to-film transition
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Twall = Tsat (K)

Steam (P =1 atm, 10 cm square) .




Dropwise Condensation Mechanism

* Droplets form at discrete nucleation sites

on surface (107 — 10° mm) 5
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* Drops grow and merge until removed by
body forces (refreshes surface)

 Most heat transfer from rigid microscale
drops

 Renewal driven by hydrodynamics
(coalescence and sliding)

.-'.,. i 3 ‘ - A
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Vapor Compression Desalination

* Recuperative distillation process

— Dropwise condensation-to-evaporation recovery:
potential 35% capital cost reduction (Lukic et al., 2010)

* Need simulation approaches to predict and prevent dropwise-to-
filmwise flooding transition

Recovery

4 HX 1

Compressor :
. Condensation to
= Evaporation
vaporator Recovery Heat Recovery
HX 2
Seawater
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Open Research Challenges for Dropwise Condensation

* How to predict heat transfer rate from first principles?
* Flow behavior and contributions of large droplets?
* Engineering film removal paths

* Prior models: track all droplets as rigid bodies
— Can only capture part of active scales (10° droplets / mm?)
— Cannot account for hydrodynamics
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Approach and Objectives

* Multiscale simulation approach
— Large scale flows: Direct volume-of-fluid (VOF) simulation (expensive)
— Microscale transport: Eulerian averaged formulation

Sub-Grid Scale | Grid Scale
Heat Transfer ! Heat Transfer

108 107 10 10~ 104 107

Droplet Radius (m)
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Phase Change Model with Interfacial Resistance

* |n dropwise condensation, most heat transfer near contact-line

— Here interfacial thermal resistance dominant (sub-continuum)
Wall heat flux (W cm™)

I100
10

I,

* Model with closure model
centered on interface

Apc = R/ = (A(S(X o xint))

Int

N
\ - -
A (X — Xip) = ‘Val‘Vcell

N
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Validation for Droplet Growth
T, all = Tsat_ 10K

atm’ "w

* Comparison with growth rate model of Le Fevre and Rose (1965)

* Validation study for condensing water, P

Temperature (C)
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Alexander S Rattner 29



Application to Large-Scale Dynamics

* VOF method applied to large-droplet dynamics
* Here: coalescence of two D = 100 um droplets
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Coalescence Results and Assessment

* Heat transfer enhancement due to droplet mixing
* Finite coalescence time

0.004

Heat Conducted through the base of the coalescing droplets Surface area covered by the base of the coalescing droplets
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Grid-Scale Condensation Simulation

* Preliminary simulations of grid-scale condensation
e (Water 127°C, reduced g, AT=10K, 2 x 2 mm plate, t ~ 0.05 s)
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Grid-Scale Condensation Simulation

* Integrate resolved grid-scale with SGS heat transfer model

* Based on age since last dry or wiped clear between large droplets
— g5 (T) from Glicksman and Hunt (1972)
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Grid-Scale Condensation Simulation

* Preliminary results, wall heat flux

* Coalescence & sliding events reset droplet growth cycle

Grid Scale Sub Grid Scale



Some Open Challenges in Phase-Change CFD

& Potential Research Directions



Extreme Ranges of Scales in Boiling and Condensation

* Dropwise condensation: up to 10° active sites / mm?

— 5 cm square, storing x, y, and r (FP doubles): 55 TB memory!

* Boiling: um-scale nucleation sites up to cm-scales vapor slugs

e Potential for multiscale approaches with low-cost microscale models

Large Flow Structures
VOF interface capturing

a

Wake ‘
shear-off Evaporative growth
& Coalescence

N |

Dispersed Vapor Bubbles
Lagrangian tracking
& Eulerian averaging

Growth,
Coalescence, Growth &
& Breakup Departure

Nucleation Site Scale
Lagrangian tracking
or Eulerian averaging

|
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Interface Breakup and Coalescence

* Most solvers predict coalescence/breakup when meniscus < A esh

— Fail to predict real interface dynamics (bubble bouncing)
* Need hybrid continuum-MD methods (Bardia et al., 2016)

Fl+: +0.000
E;p:+12 us ms Air-water flow (Alnajdi & Rattner, 2016)



Summary and Outlook



Summary and Outlook

* Apply phase change simulations at phenomena and process scales
to advance energy systems

2100 ol
-y .. | | Compressor

U Evaporator

e

>

Transport Phase Change Thermal Energy
Phenomena Processes Systems
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* Potential for complementary simulations and
experiments (beyond validation)

Summary and Outlook

* Open research challenges: highly multiscale
processes, approaching continuum limits
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