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Application I: Shape Optimization of Vehicle in Turbulent Flow

Volkswagen Passat

Shape optimization

Minimum drag configuration
Unsteady effects

Simulation

4M vertices, 24M dof
Compressible Navier-Stokes
Spalart-Allmaras

Single forward simulation

≈ 1 day on 2048 CPUs
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Application II: Optimal Control Flapping Wing

Biologically-inspired flight

Micro Aerial Vehicles (MAVs)

Mesh

43,000 vertices
231,000 tetra (p = 3)
2,310,000 DOF

CFD

Compressible Navier-Stokes
Discontinuous Galerkin

Shape optimization, control

unsteady effects
min energy, const thrust

Micro Aerial Vehicle

Flapping Bat Flight Simulation

Visualization of Mach number on isosurface of entropy

Unphysical separation around simplified animal “body”

Flapping Wing [Persson et al., 2012]
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Application III: Topology Optimization

Design of new lacrosse head 1

Mesh

96,247 vertices
475,666 tetra
276,159 DOF

Single forward simulation

≈ 5 minutes on 1 core

Desired: topology optimization

Finer mesh (10-100x)
Realistic material model

1Collaboration with K. Washabaugh
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Problem Formulation

Goal: Find the solution of the unsteady PDE-constrained optimization problem

minimize
U , µ

J (U ,µ)

subject to C(U ,µ) ≤ 0

∂U

∂t
+∇ · F (U ,∇U) = 0 in v(µ, t)

where

U(x, t) PDE solution

µ design/control parameters

J (U ,µ) =

∫ Tf

T0

∫
Γ

j(U ,µ, t) dS dt objective function

C(U ,µ) =

∫ Tf

T0

∫
Γ

c(U ,µ, t) dS dt constraints
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ALE Description of Conservation Law

Map from fixed reference domain V to physical, deformable (parametrized)
domain v(µ, t)

A point X ∈ V is mapped to x(µ, t) = G(X,µ, t) ∈ v(µ, t)

Introduce transformation

UX = gU

FX = gG−1F −UXG−1vX

where

G = ∇XG, g = detG, vX =
∂G
∂t

∣∣∣∣
X

X1

X2

NdA

V

x1

x2

nda

v
G, g, vX

Transformed conservation law

∂UX
∂t

∣∣∣∣
X

+∇X · FX(UX , ∇XUX) = 0
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Spatial Discretization: Discontinuous Galerkin

Re-write conservation law as
first-order system

∂UX
∂t

∣∣∣∣
X

+∇X · FX(UX , QX) = 0

QX −∇XUX = 0

Discretize using DG

Roe’s method for inviscid flux

Compact DG (CDG) for
viscous flux

Semi-discrete equations

M
∂u

∂t
= r(u,µ, t)

u(0) = u0(µ)The CDG Method – Summary

1
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Stencil for CDG, LDG, and BR2 fluxes
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Temporal Discretization: Diagonally-Implicit Runge-Kutta

Diagonally-Implicit RK (DIRK) are implicit Runge-Kutta schemes defined
by lower triangular Butcher tableau → decoupled implicit stages

Overcomes issues with high-order BDF and IRK

Limited accuracy of A-stable BDF schemes (2nd order)
High cost of general implicit RK schemes (coupled stages)

u(0) = u0(µ)

u(n) = u(n−1) +

s∑
i=1

bik
(n)
i

u
(n)
i = u(n−1) +

i∑
j=1

aijk
(n)
j

Mk(n)i = ∆tnr
(
u
(n)
i , µ, tn−1 + ci∆tn

)

c1 a11
c2 a21 a22
...

...
...

. . .

cs as1 as2 · · · ass
b1 b2 · · · bs

Butcher Tableau for DIRK scheme
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Fully-Discrete Adjoint Equations

λ(Nt) =
∂F

∂u(Nt)

T

λ(n−1) = λ(n) +
∂F

∂u(n−1)

T

+

s∑
i=1

∆tn
∂r

∂u

(
u
(n)
i , µ, tn−1 + ci∆tn

)T
κ
(n)
i

MTκ
(n)
i =

s∑
j=i

aji∆tn
∂r

∂u

(
u
(n)
j , µ, tn−1 + cj∆tn

)T
κ
(n)
j

Linear evolution equations solved backward in time

Requires solving linear systems of equations with
∂r

∂u

T

Accurate solution of linear system required

Primal state, u(n), and stage, k
(n)
i , required at each state/stage of dual solve

Parallel I/O

Heavily-dependent on chosen ouput

λ(n) and κ
(n)
i must be computed for each output functional F
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Gradient Reconstruction via Dual Variables

Equipped with the solution to the primal problem, u(n) and k
(n)
i , and dual

problem, λ(n) and κ
(n)
i , the output gradient is reconstructed as

dF

dµ
=
∂F

∂µ
− λ(0)T ∂u0

∂µ
−

Nt∑
n=1

∆tn

s∑
i=1

κ
(n)
i

T ∂r

∂µ
(u

(n)
i , µ, t

(n)
i )

Independent of sensitivities,
∂u(n)

∂µ
and

∂k
(n)
i

∂µ
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Energetically-Optimal Trajectory
Constrained, Energetically-Optimal Flapping
Energetically-Optimal Shape

Problem Setup

maximize
h(t),θ(t)

∫ T

0

∫
Γ

f · v dS dt

subject to h(0) = h′(0) = h′(T ) = 0, h(T ) = 1

θ(0) = θ′(0) = θ(T ) = θ′(T ) = 0

∂U

∂t
+∇ · F (U ,∇U) = 0

h(t)

θ(t)

c
c/3

Airfoil schematic, kinematic description

Non-zero freestream velocity

h(t), θ(t) discretized via clamped cubic splines

Knots of cubic splines as optimization
parameters, µ

Black-box optimizer: SNOPT

Zahr PDE-Constrained Optimization, etc


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Introduction
PDE-Constrained Optimization

Applications I
Reduced-Order Model Acceleration

Applications II
Conclusion

Energetically-Optimal Trajectory
Constrained, Energetically-Optimal Flapping
Energetically-Optimal Shape

Optimization Results: Vorticity Field History

Energy = −1.47

h0(t), θ0(t)

Energy = −0.120

h0(t), θ∗(t)

Energy = 0.756

h∗(t), θ∗(t)

Initial Guess: h0(t), θ0(t)
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Energetically-Optimal Trajectory
Constrained, Energetically-Optimal Flapping
Energetically-Optimal Shape

Problem Setup

maximize
h(t),θ(t)

∫ T

0

∫
Γ

f · v dS dt

subject to −
∫ T

0

∫
Γ

Fx dS dt ≥ c

h(k)(t) = h(k)(t+ T )

θ(k)(t) = θ(k)(t+ T )

∂U

∂t
+∇ · F (U ,∇U) = 0

h(t)

θ(t)

c
c/3

Airfoil schematic, kinematic description

Non-zero freestream velocity

h(t), θ(t) discretized via phase/amplitude of
Fourier modes

Knots of cubic splines as optimization
parameters, µ

Black-box optimizer: SNOPT
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Energetically-Optimal Trajectory
Constrained, Energetically-Optimal Flapping
Energetically-Optimal Shape

Optimization Results: Vorticity Field History

Energy = -9.51
Thrust = 0.198

h0(t), θ0(t)

Energy = -0.455
Thrust = 0.0

h∗(t), θ∗(t)

Energy = -1.61
Thrust = 0.7

h∗∗(t), θ∗∗(t)
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Energetically-Optimal Trajectory
Constrained, Energetically-Optimal Flapping
Energetically-Optimal Shape

Problem Setup

maximize
w

∫ T

0

∫
Γ

f · v dS dt

subject to
∂U

∂t
+∇ · F (U ,∇U) = 0

Radial basis function parametrization

X ′ = X + v +
∑

wiΦ(||X − ci||)

Zero freestream velocity

h(t), θ(t) prescribed

Black-box optimizer: SNOPT

h(t)

θ(t)

c
c/3

Airfoil schematic, kinematic description
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Energetically-Optimal Trajectory
Constrained, Energetically-Optimal Flapping
Energetically-Optimal Shape

Optimization Results: Vorticity Field History

Energy = -1.01

Initial

Energy = -0.609

Optimal
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Reduced-Order Model

Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional affine subspace

u ≈ Φy =⇒ ∂u

∂µ
≈ ∂ur

∂µ
= Φ

∂y

∂µ

where y ∈ Rn are the reduced coordinates of ur in the basis Φ ∈ RN×n, and
n� N

Substitute assumption into High-Dimensional Model (HDM), R(u,µ) = 0

R(Φy,µ) ≈ 0

Require projection of residual in low-dimensional left subspace, with basis
Ψ ∈ RN×n to be zero

Rr(y,µ) = ΨTR(Φy,µ) = 0
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Adaptive Approach to ROM-Constrained Optimization

HDM

HDM

ROB
Φ,ΨCompress

ROM

OptimizerHDM
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Adaptive Approach to ROM-Constrained Optimization
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Adaptive Approach to ROM-Constrained Optimization

Adaptive Approach to ROM-Constrained Optimization

Collect snapshots from HDM at sparse sampling of the parameter space

Initial condition for optimization problem

Build ROB Φ from sparse training

Solve optimization problem

minimize
y∈Rn, µ∈Rp

f(Φy,µ)

subject to ΨTR(Φy,µ) = 0

1

2
||R(Φy,µ)||22 ≤ ε

Use solution of above problem to enrich training and repeat until
convergence
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Compressible, Inviscid Airfoil Inverse Design

(a) NACA0012: Pressure field
(M∞ = 0.5, α = 0.0◦)

(b) RAE2822: Pressure field (M∞ = 0.5,
α = 0.0◦)

Pressure discrepancy minimization (Euler equations)
Initial Configuration: NACA0012
Target Configuration: RAE2822

Zahr PDE-Constrained Optimization, etc



Introduction
PDE-Constrained Optimization

Applications I
Reduced-Order Model Acceleration

Applications II
Conclusion

Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimization Results
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimization Results

0 5 10 15 20 25 30
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ct

iv
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u

n
ct
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HDM-based optimization
ROM-based optimization
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Problem Setup

25

40

16000 8-node brick elements, 77760 dofs

Total Lagrangian form, finite strain, StVK

St. Venant-Kirchhoff material

Sparse Cholesky linear solver (CHOLMOD)

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 1

2
V0

r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT

Maximum ROM size: ku ≤ 5
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimal Solution Comparison

HDM CTRPOD + Φµ adaptivity

HDM Solution HDM Gradient HDM Optimization

7458s (450) 4018s (411) 8284s

HDM
Elapsed time = 19761s

HDM Solution HDM Gradient ROB Construction ROM Optimization

1049s (64) 88s (9) 727s (56) 39s (3676)

CTRPOD + Φµ adaptivity
Elapsed time = 2197s, Speedup ≈ 9x
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

CTRPOD + Φµ adaptivity
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Problem Setup

10

10

(a) XY view

10

10

(b) XZ view

64000 8-node brick elements, 206715 dofs

Total Lagrangian formulation, finite strain

St. Venant-Kirchhoff material

Jacobi-Preconditioned Conjugate Gradient

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 0.15 · V0
r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT

Maximum ROM size: ku ≤ 5
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimal Solution Comparison

HDM CTRPOD + Φµ adaptivity

HDM, elapsed time = 179176s

CTRPOD+Φµ adaptivity, elapsed time = 15208s

Speedup ≈ 12×
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Future Work

Application of the method to real-world 3D problems

Extension of the method to multiphysics problems, such as FSI

Extension of the method to chaotic problems, such as LES flows, where
care must be taken to ensure the sensitivities are well-defined

Incorporation of adaptive model reduction technology to further reduce
the cost of unsteady optimization
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Thank You!
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