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DSAs (donation service areas) 



Range of transplant rates, by DSA 
MELD 38-39: 18% to 86% 



Range of waiting list death rate, by DSA 

MELD 38-39: 14% to 82% 



Geographic disparities are significant 

• Median MELD at transplant varies among OPOs by 10 
points; 90-day survival for MELD 38 varies 4-fold 

• Candidates have 20% lower risk of death and 74% 
higher chance of transplantation if they transferred 
from their initial listing OPO to a different one  
(Dzebisashvili et al. 2013) 

– Transferring to a different OPO is highly correlated with 
socioeconomic status 

• Geographic disparities explain disparities between 
liver transplant rates for Caucasians and Hispanics, 
because these populations live in different places 
(Volk et al. 2009) 

 



Department of Health and Human 
Services Final Rule (1998)  

42 CFR Part 121.8(b) 
 

“Neither place of residence nor 
place of listing shall be a major 

determinant of access to a 
transplant.” 

 



DSAs are partitioned into regions 



? 



 
December 29, 1999 

Iowa Turf War Over Transplants 
Mirrors Feuds Across the Nation 
“But the debate is not just about saving lives… the fight, 
they say, is about which transplant centers -- not which 
patients -- will get the scarce organs, and the profits 
and prestige that go with them.” 



“Broader sharing” not sufficient; 
disparity is worse using existing regions 

Disparity in median transplant MELD  

Disparity with fully regional sharing 

• Fully regional sharing is not 
predicted to reduce disparity 
in MELD at transplant! 

• Paradoxically, fully regional 
sharing increases disparity, 
as measured by variance of 
transplant MELD, from 7.55 
to 10.14    
(Gentry et al. AJT 2013) 



Optimal Redistricting 

• Redistricting uses integer programming to 
design geographic boundaries that partition 
an area into smaller areas 

– There is a substantial body of OR literature on 
redistricting for voting districts and school 
districts, dating from 1950s to the present 

• We partition the DSAs into new districts 

– design first (OPL/CPLEX), then analyze (LSAM) 



Partition DSAs into districts 

Under redistricting, 
livers would be 
allocated to the sickest 
candidate anywhere in 
the district 



Redistricting Objective 

• Minimize misdirected livers 

– A misdirected liver is one that goes to a different 
district than it would have if organs went to 
highest MELD patient anywhere in the country. 

• Subject to constraints 
(least geographic disparity achievable through 
the allocation system is under national share) 



Liver Committee’s design constraints 

• The number of districts should be at least 4 
and no more than 8. 

• Minimum number of transplant centers per 
district is 6. 

• The maximum allowable median travel time 
between DSAs placed in the same district 
should be 3 hours. 



wik = 1 if DSA i is in the district with center  
 at DSA k, and 0 if not 

Yk = 1 if DSA k is selected as the center of a 
 district, and 0 if not 

ck = active liver transplant centers in DSA k 

dk = donors available in DSA k 

pk = number of donors that should go to DSA k 
 under proportional allocation  

δij = volume-weighted distance from DSA i to j  
τij = volume-weighted transport time between 
 DSAs i and j  

 

 



Objective: minimize geographic disparity 
in liver availability by minimizing the sum 

of misdirected livers 



Each DSA is assigned to one district 
 

If a DSA k is assigned as the center of the 
district containing DSA i,      

should be 1 



Number of districts is N 
 

Require at least  
transplant centers in each district 

 



Maximum transport time from each district 
to its district center is  

 



δij = volume-weighted distance from DSA i to j  
𝛼𝑖𝑗𝑘 = 1 if 𝛿𝑖𝑘 > 𝛿𝑖𝑗 , 0 if not  

 

Every DSA is assigned to its nearest 
 district center  

(Daskin, Service Science, 2010) 

 

 



8 districts, 3 hour limit 



4 districts, 3 hour limit 



Liver Simulated Allocation Model 

• The redistricting integer program is greatly 
simplified 

– Assume MELDs are fixed 

– Assume no deaths, no one becomes too sick 

– Assume all offers are accepted 

• Liver Simulated Allocation Model re-
introduces realistic clinical detail  

– Standard deviation of median MELD at transplant 
among DSAs is a geographic equity metric derived 
from LSAM data 



Liver Simulated Allocation Model 
Thompson and Waisanen, 2004 



Simulated redistricting impacts  



Disparity in transplant MELD, local 



Disparity in transplant MELD, regional 



Disparity in transplant MELD, 8 districts 



Disparity in transplant MELD, 4 districts 



Redistricting and organ transport 



Redistricting is cost-saving 



“In short, the unanimous vote taken on April 1st 
that sent two optimized redistricting plans 
forward for public comment was 
unprecedented.  I could not have imagined that 
every single member of the Liver Committee, 
including members representing transplant 
centers that are expected to do fewer liver 
transplants as a result of redistricting, would 
vote in favor.”   
 
- Dr. David Mulligan, Chair, OPTN Liver and 
Intestinal Transplantation Committee 



September 2014 public forum 



Lessons for implementing computational 
science solutions in healthcare 

• Build transparent optimization models 

• Enable decision-makers to focus on principles 
and objectives, not on constructing or 
critiquing ad hoc policies 

• Make things as simple as they must be, but 
then use simulation to make them detailed 
enough to be plausible to clinicians 

 

 



Kidney paired donation (KPD) 
or, kidney exchange 



Graph: recipient / donor pairs 
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EDGE:  
Connects two 

pairs if an 
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possible 
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Non-optimal 
matching: 
Accept matches 
without using 
optimization until no 
edges remain. 
 
Only 10 of 40 
patients get a 
transplant 
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Maximum cardinality 
matching: 
Paths, Trees, and Flowers, 
Edmonds (1965) 
 

14 of 40 get 
transplants 
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pediatric recipients, 
highly sensitized recipients  
same-center matches 





Prioritized KPD matching 

• Decisions: choose which incompatible  
pairs exchange (select edges in the graph) 

• Constraints: each incompatible pair  
involved in only one match (one edge per node) 

• Objective: maximize total benefit of transplants 

– Benefit will have to be defined by the scientific 
consensus, histocompatibility, medical 
judgment, patient and transplant center 
preferences, same-center match priority 

– Edmonds’ algorithm finds the exchanges that 
yield the maximum benefit 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 
30 

31 

32 

33 

34 

35 

36 

37 

38 

39 



0 

1 

2 

3 

4 

5 

6 

7 
8 

9 10 11 
12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 
28 

29 30 31 
32 

33 

34 

35 

36 

37 

38 

39 

Maximum edge-weight 
matching 
 

14 get transplants, 
benefit sum is 170 
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Greedy edge-rank heuristic 

• Take best single paired donation match (edge) 
available, then next best edge, until no edges 
remain  

– neglects the connection structure of the graph; 
provably fails to find an optimal solution in many 
cases 

120 
100 100 



KPD and the law 

• National Organ Transplantation Act (1984) 
ordered that no one may donate an organ in 
exchange for valuable consideration 



Simulated patients and social networks 

Patient 
Sibling 

Sibling 

Mother Father 

Child Child 

Spouse 

Friend 

Each Patient has between 1-4 available donors 

Relationshi
p of Donor % 

Parent 19.7 

Child 16.8 

Sibling 42.4 

Spouse 10.0 

Unrelated 11.2 

Gentry, Segev, et al. 2005. Am J Transplant. 



Blood-type inheritance 

Mother 
AA 

Father 
BO 

Recipient 
AO 

Spouse 
OO 

Sibling 
AB 

Daughter 
OO 

Son 
AO 

Friend 
BO 



Decision tree model of family 

Potential donors 

Medical workup  
(pass 56% or 75%),  

crossmatch tests (11%),  
bloodtyping 

Incompatible 
donor/recipient  

pairs 
Direct donation 

(Zenios, Woodle, Ross, Transplantation 72:4, 2001) 

2406-4443 pairs annually 

No willing,  
 healthy donor 

Simulate until reach 
# of real live donors (6468) 



Simulation and legislation 

• 2406-4443 pairs predicted to present yearly 

– At least half of these pairs match for paired donation 

• $340 million saved over dialysis using optimized 
matching for kidney paired donation 

• 20% increase in living donor kidney 
transplantation 
 
 

• 2007 Charlie W. Norwood act legalized kidney 
paired donation for the first time in U.S. 

(Segev, Gentry, et al., JAMA, 2005) 
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