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Experimental#Probes#of#Planetary#Conditions
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R.F.&Smith&et&al.,&Nature&511 (2014)&330+333
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The#Malfunction#Junction

Basic Research Needs for HEDLP: Report of the Workshop on HEDLP Research, DOE (2009)
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Simulations are difficult!

• Quantum effects, strong correlation, partial ionization…

• Approximations affect calculated material properties

Simulations are important!

• Data used in core structure modeling, experimental design

• Experiments hard, expensive, limited

Quantum#and#Classical



Quantum#Molecular#Dynamics
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Popular, but...

• no explicit temperature dependence in electrons

• computationally expensive

• need TD electrons for response

• no energy transfer between electrons and ions

IPAM, UCLA



Quantum#Molecular#Dynamics
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Popular, but...

• no explicit temperature dependence in electrons

• computationally expensive

• need TD electrons for response

• no energy transfer between electrons and ions

IPAM, UCLA
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Adapted from http://hifweb.lbl.gov/public/BeamHEDP2010, original by W. Lorenzen

The#Bottleneck
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APPROXIMATE,
DENSITY?

APPROXIMATE,
FUNCTIONAL?

Zoom#in#on#electronic#step…

A.&Cangi and&A.&Pribram+Jones,&arxiv:1411.1532
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DFT: FUNCTIONALDENSITY
GROUND-

STATE 
ENERGY

FUNCTIONALPOTENTIAL
FINITE-

TEMPERATURE 
ENERGY

FUNCTIONALPOTENTIAL
GROUND-

STATE 
ENERGY

PFT:&&

FT&PFT:

PFT:#An#Exact#Formulation
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Ks : “universal” part of thermal electrons’ free energy

τ : temperature

vs : external potential of non-interacting system

ns[vs] : density written in terms of the potential

bar: integral over the coupling constant
A.&Cangi and&A.&Pribram+Jones,&arxiv:1411.1532

Exact#Expression#for#Kentropy

3

mapping, the non-interacting, finite-temperature univer-
sal density functional is defined[35]

F̃ ⌧
S [n] := min

�̂!n

K⌧ [�̂] = K⌧ [�̂⌧
s [n]] = K̃⌧

s [n], (7)

The non-interacting kentropy K̃S[n] = T̃S[n]�⌧ S̃S[n] gen-
erates the KS equations and the KS orbitals (tildes de-
note density functionals). The orbitals are implicit func-
tionals of the density via the KS equations, and the av-
erage density is constructed by Fermi-weighted summing
of the orbitals. Solution of these equations at every time-
step is the most costly step of DFT molecular dynamics.

The KS potential is defined[20, 21]

vS(r) = v(r) + ṽH[n
⌧
S[vS]](r) + ṽXC[n

⌧
S[vS]](r) , (8)

where, in contrast to KS-DFT, the density is posed as a
potential functional. All many-body interactions among
the electrons are captured as in KS-DFT, via the (tradi-
tionally defined) Hartree and XC potentials[37]. The dif-
ference from a KS-DFT calculation is that Eq. (8) in con-
junction with an approximation to the non-interacting
density bypasses the hugely expensive iterative solution
of the KS equations for WDM. Choosing a potential func-
tional approximation to the non-interacting density au-
tomatically generates an approximated KS potential (see
Supplemental Materials). Once the self-consistent KS
potential is determined, the KS kentropy is computed
from

K⌧
S [vS] =

Z
d3r {n̄⌧

S(r)� n⌧
S[vS](r)} vS(r) , (9)

which is the analog of Eq. (6) for KS electrons.
Again, Eq. (9) defines a coupling-constant approxima-
tion, K̆⌧

S [vS], when evaluated on any chosen approxima-
tion to the non-interacting density n̆⌧

S. Finally, the grand
potential expressed in terms of KS quantities[35],

⌦⌧
v�µ

= K⌧
S [vS] + Ũ [n⌧

S[vS]] + F̃⌧
xc

[n⌧
S[vS]]

+

Z
d3r n⌧ [vS](r) (v(r)� µ) ,

(10)

is evaluated via Eq. (9). Through this result, we lever-
age the body of time-proven XC approximations and
eliminate the need for separate approximations to the
KS kentropy in orbital-free (and thereby computation-
ally inexpensive) schemes. Only an approximation to the
non-interacting density is required for a general, system-
atic, non-empirical route to improved kentropy approxi-
mations.

To illustrate the significance of our main result in
Eq. (9), we consider a simple, useful numerical demon-
stration: Non-interacting, spinless fermions in an arbi-
trary potential v(x) confined to a box of size L obeying
vanishing Dirichlet boundary conditions. (In a practical
realization, this would be the self-consistent KS potential

of the given many-body problem.) An approximation to
the non-interacting density at finite temperature is de-
rived from the semiclassical propagator written as a con-
volution of the zero-temperature propagator with a fac-
tor carrying all temperature dependence[36]. From the
propagator, we extract the density via an inverse Laplace
transformation. Recently, a highly accurate PFA to the
density was derived for this model using the path inte-
gral formalism and semiclassical techniques[38]. Here we
extend this result to finite temperature and obtain:

n̆⌧
S(x) = lim

x

0!x

4X

�=1

1X

j=0

�̆⌧
S (x, x

0;↵, j) , (11)

a PFA to the density at a given temperature and chemical
potential, where

�̆⌧
S (x, x

0;↵, j) =
⌧ sin⇥↵

µ

(x, x0; j)csch[⇡⌧T �

µ

(x, x0; j)]

(�1)↵+1
p

k
µ

(x)k
µ

(x0)
.

(12)
Here we define generalized classical phases ⇥1

µ

(x, x0; j) =
✓�
µ

(x, x0) + 2j✓
µ

(L), ⇥2
µ

(x, x0; j) = ✓+
µ

(x, x0) + 2j✓
µ

(L),
⇥3

µ

(x, x0; j) = ✓�
µ

(x, x0) � 2(j + 1)✓
µ

(L), ⇥4
µ

(x, x0; j) =
✓+
µ

(x, x0)�2(j+1)✓
µ

(L) and generalized classical travel-
ing times T ↵

µ

(x, x0; j) = d⇥↵

µ

(x, x0; j)/dµ. Furthermore,

✓±(x, x0) = ✓(x) ± ✓(x0), where ✓
µ

(x) =
R
x

0 dy k
µ

(y) and

k
µ

(x) =
p

2(µ� v(x)) at a given chemical potential µ,
which is determined by normalization of the density.
The physical interpretation of our result in Eq. (11) is

instructive: For a given chemical potential there are in-
finitely many classical paths that contribute to the total
density. These are classified into four primitives (iden-
tified by ↵) onto which an integral number of periods
(labelled by j) is added. The first primitive is special,
in that it yields the TF density. However, higher-order
terms in j do not yield the conventional gradient expan-
sion. All other primitives and additional periods carry
phase information about reflections from the boundaries,
producing quantum density oscillations that greatly im-
prove upon the TF result[38]. For more details, see
Ref. [38].
Our result in Eq. (11) is evaluated numerically for a

given temperature by truncating the infinite sum at con-
vergence. Importantly for WDM applications, the higher
the temperature, the lower the upper limit required for
convergence of the sum. In fact, in the WDM regime
only the leading term (j = 1) in the sum needs to be
kept. Similar results have also been recently found at
zero temperature[38, 39], so this may be a universal fea-
ture due to the approximation’s semiclassical nature.
The stationary phase approximation used to derive

Eq. (11) yields the TF density at zero temperature as the
leading term, i.e., lim

x

0!x

�̆⌧
S (x, x

0; 1, 0) = k
µ

(x)/⇡ =
n̆0

TF(x), instead of the finite-temperature TF
density n̆⌧

TF(x) =
p

⌧/(2⇡)F�1/2(z), where
F
⌫

(z) =
R1
0 da a⌫ [1+ exp(a� z)]�1 and z = k2

µ

(x)/2⌧ .



Highly#Accurate#Density
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A.&Cangi and&A.&Pribram+Jones,&arxiv:1411.1532
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Not#Reliant#on#Error#Cancellations

A.&Cangi and&A.&Pribram+Jones,&arxiv:1411.1532
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Accurate#Across#Regimes

A.&Cangi and&A.&Pribram+Jones,&arxiv:1411.1532

4

may be a universal feature due to the approximation’s
semiclassical nature.

However, the stationary phase approximation
used to derive Eq. (11) yields the TF den-
sity at zero temperature as the leading term,
i.e., lim

x

0!x

�̆⌧
S (x, x

0; 1, 0) = k
µ

(x)/⇡ =
n̆0

TF(x), instead of the finite-temperature TF
density n̆⌧

TF(x) =
p
⌧/(2⇡)F�1/2(z), where

F
⌫

(z) =
R1
0 da a⌫ [1+ exp(a� z)]�1 and z = k2

µ

(x)/2⌧ .
We fix this problem with an ad-hoc correction and ensure
the correct boundary conditions. To do so, we replace
the density from the first primitive lim

x

0!x

�̆⌧
S (x, x

0; 1, 0)
with a Gaussian interpolation of n̆0

TF(x) and n̆⌧
TF(x).

In this way, we cope with the density approaching the
high-temperature limit (under which TF theory becomes
exact) di↵erently in two distinct regions, the interior
of the box and the edge regions near the walls. These
two distinct boundary layers have di↵erent asymptotic
expansions in the high-temperature limit. The size of
the edge-region boundary layers shrinks as the limit is
approached. Our Gaussian interpolation is a crude ver-
sion of the asymptotic matching used in boundary-layer
theory[40].

In Fig. 1, we plot a typical density of five parti-
cles in the WDM regime (⇤ ⇡ 1) in the potential
v(x) = �2 sin2(⇡x/10) within a ten-unit box, along
with approximate densities. The black curve is the
exact result, the red dashed curve is our approxima-
tion, the green dotted curve is the TF density, and
the purple dotted curve is the second-order gradient-
corrected TF[36] density with the second-order gradi-
ent correction given by �@2

x

v(x)/
p
512⇡⌧3F�5/2(z) �

5(@
x

v)2/
p
8192⇡⌧5F�7/2(z). In addition, the light-blue

shaded area denotes the corresponding density at zero
temperature. Quantum oscillations in the density persist
in the WDM regime, and TF theory completely fails to
capture them. On the other hand, our PFA – derived to
include quantum e↵ects – is able to describe them prop-
erly and is therefore highly accurate. This mimics the
results for cold densities seen in Fig. 1 of Ref. [22].

Next, we demonstrate the accuracy of our approach for
kentropies. For our example, Eq. (9) simplifies to

K̆⌧
S [v] = K⌧

S,0 +

Z
dx

�
˘̄n⌧

S(x)� n̆⌧
S[v](x)

 
v(x) . (13)

In this case the reference potential is not zero, but an
infinite square well. Hence, a kentropic contribution
K⌧

S,0 = T ⌧
S,0 � ⌧S⌧

S,0 of the reference system appears,
which we compute exactly. The kinetic energy of the
infinite square well is T ⌧

S,0 =
P

N

j

f ⌧
j

✏
j,0, and the entropy

is S⌧
S,0 = �

P
j

f ⌧
j

ln(f ⌧
j

) + (1� f ⌧
j

) ln(1� f ⌧
j

), with f ⌧
j

=
1/(1.0+exp [(✏

j,0 � µ0)/⌧ ]) denoting Fermi functions and
✏
j,0 and µ0 the jth eigenvalue and chemical potential.
We avoid temperature-dependent KS eigenvalues[32] by
choosing a purely non-interacting reference system, not

TABLE I. Residual kentropy of five particles in the same po-
tential as in Fig. 1. We list the error of the conventional TF
approach, its gradient correction, and of our PFA (given in
Eq. (13)) far below and above where WDM is typically en-
countered.

⇤ K

⌧
S,0 �K

⌧
S error ⇥ 102

TF GEA(2) PFA
0.16 3.94 0.462 6.39 8.93 �0.32
0.31 3.87 0.461 7.16 9.85 �0.28
0.47 3.76 0.459 7.91 10.11 �0.31
0.62 3.64 0.456 8.39 10.01 �0.29
0.78 3.50 0.452 8.61 9.78 �0.30
0.93 3.34 0.448 8.65 9.52 �0.37
1.09 3.16 0.444 8.58 9.24 �0.50
1.40 2.77 0.435 8.21 8.63 �0.87
1.71 2.36 0.425 7.69 7.99 �1.27
2.02 1.92 0.414 7.13 7.35 �1.61
2.48 1.25 0.396 6.34 6.46 �1.86
2.94 0.58 0.378 5.64 5.69 �1.80
3.41 �0.10 0.360 5.04 5.04 �1.45
4.03 �0.99 0.338 4.37 4.33 �0.63

a KS system associated with a specific interacting sys-
tem. Evaluating Eq. (13) for the same potential as in
Fig. 1 yields the results in Tab. I. We measure the er-
ror of TF theory, its gradient correction, and our PFA
with respect to the residual kentropy �K⌧

S = K⌧
S �K⌧

S,0,
because this is the only approximated piece of the ken-
tropy. From cold temperatures up to the WDM regime
(⇤ ⇡ 1), our PFA yields kentropies that are significantly
more accurate than either TF theory or the gradient ex-
pansion, improving them by roughly an order of mag-
nitude. In fact, the gradient correction worsens the re-
sults, though it may improve them in other systems. In
any case, the gradient correction is small, while our PFA
yields dramatic improvements. Far beyond the WDM
regime, the entropic contribution dominates, and the er-
rors of all methods become comparable. In Tab. I, N is
fixed as temperature increases. If instead N scales with
increasing temperature, the system will approach a Lieb-
like limit and TF accuracy is less than one percent for
⇤ > 2.

We can better understand the advantage of our PFA
over the conventional TF approach by analyzing both
in real space. We compute residual kentropic densities
(the integrand of Eq. (13)) for the example in Fig. 1.
As illustrated in Fig. 2, the TF approach (dotted green
curve) and its gradient correction (dotted purple) only
reproduce the qualitative trends of the exact result (black
curve). Errors due to an overestimation in the interior
are balanced by underestimation in the outer regions of
the system. Our PFA, on the other hand, not only yields
accurate integrated kentropies (area under the curve in
Fig. 2), but is also highly accurate in real space. As such,
and unlike TF, our PFA does not rely on cancellation of
errors in the kentropy density for its accurate kentropy
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Year 1
• Test different classes of potentials
• New density approximations: boundary layer theory, contour integration

Year 2
• Test density approximations in various potential classes
• Extend semiclassical nearly-exact exchange method to our approximate 

density matrix and combine with FT PFT

Year 3
• Extend to realistic systems; implement PFT-MD method?
• Compare to VASP DFT-MD simulations, if warranted

Proposed#FT#PFT#Development
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Exact formulation of coupling constant non-interacting 
kentropy
• Orbital-free (i.e., computationally efficient)
• Takes advantage of decades of DFT research

Demonstration using semiclassical density approximation
• Connects condensed matter and plasma regimes
• Leverages “unreasonable” accuracy of asymptotic expansions

FT#PFT:#Promising#New#Approach
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Theory Demonstration

Bypassing the malfunction junction

Aurora Pribram-Jones
with Attila Cangi (MPI Halle)

arXiv:1411.1532

Department of Chemistry
University of California, Irvine

IPAM Reunion #2, Lake Arrowhead
December 9, 2014

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT



Theory Demonstration

Quantum Molecular Dynamics

Adapted from http://hifweb.lbl.gov/public/BeamHEDP2010, original by W. Lorenzen

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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What’s the malfunction junction?

Basic Research Needs for HEDLP: Report of the Workshop on HEDLP Research, DOE (2009).

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT



Theory Demonstration

Outline

Theory
Background
Finite-Temperature Potential Functional Theory
Connecting Density and Potential

Demonstration
Density Approximation
Numerical Example

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Theory

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT



Theory Demonstration

Background

Hohenberg-Kohn (1964)

Hohenberg-Kohn Theorem (1964)

I ground-state energy depends on density

I one-to-one correspondence between density and external potential

E = T + Vee + V

= F [n] +

Z
d3r n(r)(v(r)� µ)

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Background

Kohn-Sham (1965)

I maps interacting system to non-interacting system

I defines exchange-correlation:

F [n] = TS[n] + U[n] + EXC[n]

I Kohn-Sham equations:
⇢
�1

2
r2 + vS(r)

�
�
i

(r) = ✏
i

�(r)

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Background

Orbital-Free DF Approach

Needs: approximate non-interacting kinetic energy density functional.

F [n] = TS[n] + U[n] + EXC[n]

OF-DFT challenge: TS approximations on par with KS accuracy

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Background

Orbital-Free PF Approach

Needs: approximate non-interacting kinetic energy potential functional.

F [v ] = TS[v ] + U[v ] + EXC[v ]

= TS[n[v ]] + U[n[v ]] + EXC[n[v ]]

PFT challenge: TS & n(r) approximations on par with KS accuracy
Cangi et al., PRA 88, 062505 (2013).

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Finite-Temperature Potential Functional Theory

The PFT Idea

For zero or finite temperature:

I Step 1: get F [v ]

I Step 2: approximate n[v ]

I Step 3: join Steps 1 and 2, so that approximating the density
generates F [n[v ]] automatically

This scheme introduces no additional errors beyond those from the
density approximation.

Cangi et al., PRA 88, 062505 (2013); PRL 106, 236404 (2011); PRB 81, 235128 (2010).

Elliott et al. PRL 100, 256406 (2008).

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Finite-Temperature Potential Functional Theory

Heating Things Up

Grand canonical operator:

⌦̂ = Ĥ � 1

�
Ŝ � µN̂

Electronic Hamiltonian:

Ĥ = T̂ + V̂ee + V̂

Mermin, N.D. Phys. Rev., 137:A: 1441, 1965.

Pittalis, S. et al. Phys. Rev. Lett., 107: 163001, 2011.

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Finite-Temperature Potential Functional Theory

Entropy and the Statistical Operator

Entropy operator:
Ŝ = � k

B

ln �̂

Statistical operator:

�̂ =
X

N,i

w
N,i | N,i ih N,i |

Observables:

O[�̂] = Tr {�̂Ô} =
X

N

X

i

w
N,i h N,i |Ô| 

N,i i

Pittalis, S. et al. Phys. Rev. Lett., 107: 163001, 2011.

APJ et al., Thermal DFT in Context, Springer, 2014.

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Finite-Temperature Potential Functional Theory

FT Potential Functionals

Grand canonical potential in terms of potential functionals:

⌦�

v�µ = F �[v ] +

Z
d3r n�[v ](r)(v(r)� µ)

with

F �[v ] = F �[�̂0
v�µ] = T [�̂0

v�µ] + V
ee

[�̂0
v�µ]�

1

�
S [�̂0

v�µ].

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Connecting Density and Potential

Coupling Constant

Connect potential of interest to reference potential:

v�(r) = (1� �)v0(r) + �v(r)

Via Hellmann-Feynman:

⌦�

v�µ = ⌦�

0 +

Z
d�

Z
d3r n�[v�](r)�v(r),

where �v(r) = v(r)� v0(r).

Set v0 = 0 and define n̄�[v ](r) =
R 1
0 d� n�[v�](r):

F �,cc

n

� [v ] =

Z
d3r {n̄�[v ](r)� n�[v ](r)} v(r).

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Connecting Density and Potential

Coupling-Constant Kohn-Sham

FT universal density functional:

F �
s [n] := min

�̂!n

K �[�̂] = K �[�̂�
s [n]] = K �

s [n]

FT Kohn-Sham potential:

vS(r) = v(r) + ṽH[n
�
S [vS]](r) + ṽXC[n

�
S [vS]](r)

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Connecting Density and Potential

Avoiding KS Eigenstates

Cangi, A. and APJ, arxiv:1411.1532

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Connecting Density and Potential

Coupling-constant Non-Interacting Kentropy

Once potential is found, apply earlier equation:

K �,cc

S,n�S
[vS] =

Z
d3r {n̄�

S(r)� n�
S [vS](r)} vS(r)

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Demonstration

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Density Approximation

General Density Approximation

Density approximation:

n�
S [vS](r) ⇡ lim

r0!r

1

2⇡i

⌘+1Z

⌘�1

d↵
eµ↵

↵
G �
sc[vS](r, r

0;↵) ,

where ⌘ � 0.
Generated by inverse Laplace transform of

G �
sc(r, r

0;↵) = G 0
sc(r, r

0;↵) f �(↵)

with f �(↵) = ⇡↵/[� sin(⇡↵/�)].

J. Bartel, M. Brack, and M. Durand, it Nuclear Physics A 445, 263 (1985).

S. Golden, Rev. Mod. Phys. 32, 322 (1960).

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Density Approximation

A Useful Example

I non-interacting, spinless fermions

I arbitrary potential confined to a box of size L

I Dirichlet boundary conditions

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT
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Density Approximation

Applied to Example

Extend zero-temperature method:

I uses path integral formalism and semiclassical method

I assumes stationary phase approximation

I breaks infinite number of classical paths into four primitive classes

I first primitive generates Thomas-Fermi

I all others produce quantum density oscillations

A. Cangi, E. Sim, and K. Burke, in preparation (2014).

Aurora Pribram-Jones University of California, Irvine

Finite-temperature PFT



Theory Demonstration

Density Approximation

Enforcing limits and boundary conditions

I infinite sum converges faster at higher temperatures

I only first term needed at WDM conditions

I two regions: edges and center

I use Gaussian interpolation between ZT and FT TF for first primitive

I ad hoc stitching ⇡ boundary-layer theory
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Density PFA Captures Density Oscillations
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Density of five particles in v(x) = �2 sin2(⇡x/10), L = 10,
⇤ = 1/(�µ) = 0.93. Exact (solid black curve), PFA (dashed red curve),
TF (dotted green curve).
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Residual kentropic density
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Residual kentropic density of five particles in v(x) = �2 sin2(⇡x/10),
L = 10, ⇤ = 1/(�µ) = 0.93. Exact (solid black curve), PFA (dashed red
curve), TF (dotted green curve).
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Residual Kentropy

⇤ K �

S,0 �K �
S error ⇥ 102

TF PFA
0.31 3.87 0.461 7.16 -0.28
0.47 3.76 0.459 7.91 -0.31
0.62 3.64 0.456 8.39 -0.29
0.78 3.50 0.452 8.61 -0.30
0.93 3.34 0.448 8.65 -0.37
1.09 3.16 0.444 8.58 -0.50
1.40 2.77 0.435 8.22 -0.87
1.71 2.36 0.425 7.69 -1.27
2.02 1.92 0.414 7.13 -1.61
2.48 1.25 0.396 6.34 -1.86
2.94 0.58 0.378 5.64 -1.80
3.41 -0.10 0.360 5.04 -1.45
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Future Work

I boundary-layer theory for density approximation

I reconcile complex integration with path integral approximation

I extension to realistic systems

I investigate classes of potentials

I classical continuum limit
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Summary

I derived PFT for thermal ensembles

I equation for the kentropy solely dependent on finite-temperature
density

I derived and implemented a highly accurate density approximation in
one dimension

I performed PFT calculations in the WDM regime

Advantages:

I highly accurate

I orbital free

I systematic

I converges more quickly as temperatures rise

I maintains accuracy at low temperatures
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