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Challenge: Cyber-Physical Systems  
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Car Control: Proof Sketch 

Local Lane Control 

Global Lane Control 

Local Highway Control 

Global Highway Control 
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Car Control: Proof 
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How Can We Prove Distributed Airspace? 

Sensor limits on aircraft are local. 
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Assumptions and Requirements 

• Safety: At all times, the aircraft must be separated by 

distance greater than p. 

• Aircraft trajectories must always be flyable. 

• An arbitrary number of aircraft may enter the maneuver 

at any time. 

Requirements 

• Aircraft maintain constant velocity. 

• Sensors are accurate and have no delay. 

• Collision avoidance maneuvers are executed on the 2D plane.  

 

Assumptions 
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d2 

Hybrid Dynamics 

d1 

P1 P2 

P2 

P1 

Aircraft are controlled by steering, 

through discrete changes in angular 

velocity    . 
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•Each aircraft is associated with a buffer disc.  

•The discs should never come within p of each other. 

•Discs follow aircraft when not in collision avoidance.  

•Each aircraft circles its stationary disc when in collision avoidance. 

Distributed Aircraft Control 

[PallottinoSBF07, LoosRP13] 
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Modular Proof for Distributed Aircraft 

[LoosRP13] 

To Prove: 
Safe separation of aircraft. 
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Modular Proof for Distributed Aircraft 
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Modular Proof for Distributed Aircraft 
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Modular Proof for Distributed Aircraft 

Safety Property 

Model 

… but that isn’t the end of the story. 

Proved in 

KeYmaeraD 

Proved in 

KeYmaeraD 
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Modular Proof for Distributed Aircraft 

Safety Property 

Model These proofs are hard.   

Could we simplify them by changing 

the model in a sound way?   

Proved in 

KeYmaeraD 

Proved in 

KeYmaeraD 
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Future Work for Distributed Aircraft 

Safety Property 

Model 
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Safety Property 

Model 

Future Work for Distributed Aircraft 

Differential Dynamic Logic (dL) 

✗  ✗ 
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Safety Property 

Model 

Future Work for Distributed Aircraft 

Differential Refinement Logic (dRL) 
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Case studies now in scope for theorem proving  

[FM11, ITSC11, ICCPS12, HSCC13, ITSC13] 
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A Note on Pedagogy 

Individual Simulations: Charging Station Lab: 

 

Foundations of Cyber-Physical Systems: 
 Offered Fall 2013 and Fall 2014 to ~20 undergraduate students.  

 Covered background materials in both logic and differential equations. 

 Students submitted practical labs using the KeYmaera theorem prover. 

 Takeaway: theorem proving for CPS is in scope for undergrads!  
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2D Motion 
with static and dynamic obstacles 

Challenges: 
 System Loops 

 2D Motion (Dubins Model) 

 Nondeterministic Controller 

 Differential Equations 

 Nonlinear Controller 

 Complex Differential Invariants 

 Proof Interactions and Branching 

 Passive vs. Active Safety 
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YouTube Video Tutorials 
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Challenges Solutions 

 Infinite, continuous, and 

evolving state space,  

 Continuous dynamics 

 Discrete control 

decisions 

 Distributed dynamics 

 Arbitrary number of 

aircraft 

 Emergent behaviors 

 Refinement gives hierarchical 

and modular proofs 

 Quantifiers for distributed 

dynamics 

 Non-linear flight paths allow 

flyable maneuvers 

 Unbounded time horizon 

x = 2yx = 2y
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Conclusions 

x = 2y

Thank You!  
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So, what does dRL look like exactly?  

Syntax of a dRL formula:  

Syntax of a hybrid program:  

[Platzer08] 
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So, what does dRL look like exactly?  

Syntax of a dRL formula:  

Syntax of a hybrid program:  

dRL extends dL by adding 

refinement directly into the 

grammar of formulas 


