GEOMETRIC VOLUME OF FLUID METHOD SIMULATION OF TWO-PHASE FLOW ON UNSTRUCTURED MESHES

C. B. Ivey, P. Moin Center for Turbulence Research, Stanford University

MOTIVATION

Pratt & Whitney 6000 turbofan engine Stanford ASC program zoom of combustor sector with spray Cascade Technologies, Inc.

 $\nabla \cdot \vec{u} = 0$ $\frac{df}{dt} + \nabla \cdot (f\vec{u}) = 0$ $\frac{d\left(\rho\vec{u}\right)}{dt} + \nabla\cdot\left(\rho\vec{u}\right) = -\nabla P + \frac{1}{2} \left(\rho\vec{u}\right) = -\nabla P + \frac{1}{$ $\{\rho, \mu\} = f \{\rho_1,$ $\kappa = \nabla \cdot \hat{n}$

- advection of the marker function must be conservative and bounded

VOLUME OF FLUID (VOF) METHOD

$$+ \nabla \cdot \left(\mu \left(\nabla \vec{u} + \nabla \vec{u}^{\mathsf{T}} \right) \right) - \sigma \kappa \hat{n} \delta_{S}$$
$$\mu_{1} \} + (1 - f) \{ \rho_{2}, \mu_{2} \}$$

estimates of the normal and curvature must come from the marker function field

HEIGHT FUNCTIONS

height function in direction of max component of estimated surface normal (z direction here)

EMBEDDED HEIGHT FUNCTIONS (EHF)

primal (solid line) and median-dual (hashed line) meshes with partitioning (thick line)

embedded cartesian stencil (light gray region) for bounding box (dark gray region) of median-dual mesh element

FLUX POLYHEDRA

- accuracy depends on flux polyhedron approximation of stream tube

form flux polyhedron extruding face opposite velocity direction to match flux volume

flux polyhedron region is available to neighbor

• conservation and boundedness guaranteed by preventing overlap of flux polyhedra

flux polyhedron region is unavailable to node

regions carry over into subsequent flux calculations

ROTATION OF A SLOTTED DISK

shape error

degradation in accuracy comes from sharp corners

2D DEFORMATION OF A CIRCLE

quadrilateral

triangle

shape error

under-resolved features artificially breakup, leading to detached volume

3D DEFORMATION OF A SPHERE

hexahedron

T/2

wedge

difficult to resolve thin features on tetrahedron primal mesh

shape error

tetrahedron

TWO-PHASE SOLVER OUTLINE

- Consistent mass (volume fraction) and momentum advection using extrapolated advection velocity
- Pressure gradient and surface tension discretely balance (so-called balanced-force method)
- Fractionally-stepped with mid-pointed pressure and surface tension

Finite-element discretization of viscous terms with Crank-Nicholson splitting

INVISCID STATIC DROP

- Place a dense sphere in a static gas with a large surface tension coefficient
- Spurious currents generated only by errors in curvature

hexahedron

tetrahedron

velocity error

PRIMARY ATOMIZATION OF DIESEL SPRAY FROM COMMON RAIL FUEL INJECTOR

nozzle geometry generated using x-ray tomography

zoom on bottom wall of nozzle showing turbulent structures

Surface perturbations are NOT simple Fourier modes

 $\theta_{experiment} \approx 4^{\circ}$

CONCLUDING REMARKS

- Solving two-phase flows with large density ratios is difficult
- - a discretely conservative and bounded advection operator

Solving them on unstructured node-centered meshes makes matters worse

• Leveraged a user-developed non-convex polyhedral library to develop:

a means to extract accurate and convergent normals and curvatures

ACKNOWLEDGEMENTS

- Center for Turbulence Research, Stanford University
- DOE CSGF & Krell Institute
- Stanford Graduate Fellowship
- ALCC compute allocation